Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Towards a classification of surgical skills using affine velocity

The aim of this study is to determine if navigation movements, used in surgical training, follow a particular power law which describes the relationship between the hand trajectory's curvature, torsion, and speed. Based on this approach, this study proposes the affine velocity as an appropriate classification feature to solve the surgical movement recognition problem. Eight subjects with different surgical experience were involved in the experiments. They were asked to do two kinds of movements that involve depth perception skills with their right arm. Using six video cameras and an instrumented laparoscope, the 3D trajectory of the end effector was recorded for each participant. A power law was used to fit the data sets and the exponents that relate the torsion, curvature, and speed were calculated. The exponents involved and the affine velocity for each trajectory were then computed, using a multi-variable linear regression, and compared between participants. It is shown that fitting residual follows a normal distribution indicating no regression biases. Finally, it is presented that an affine velocity analysis could be able to classify between both trajectories showing a correlation with the surgical skills and a clear difference for people with some surgical training.

References

    1. 1)
      • 42. Moon, H.-S.: ‘Experimental study on human arm reaching with and without a reduced mobility for applications in medical human-interactive robotics’. PhD. thesis, Texas A&M University, 2014.
    2. 2)
      • 19. Reiley, C.E., Lin, H.C., Varadarajan, B., et al: ‘Automatic recognition of surgical motions using statistical modeling for capturing variability’, Stud. Health Technol. Inf., 2008, 132, p. 396.
    3. 3)
      • 10. Chmarra, M., Kolkman, W., Jansen, F., et al: ‘The influence of experience and camera holding on laparoscopic instrument movements measured with the trendo tracking system’, Surgical Endoscopy, 2007, 21, (11), pp. 20692075.
    4. 4)
      • 13. Wang, X., Xia, M., Cai, H., et al: ‘Hidden-Markov-models-based dynamic hand gesture recognition’, Math. Probl. Eng., 2012, 2012, pp. 111.
    5. 5)
      • 21. Vlachos, M., Kollios, G., Gunopulos, D.: ‘Discovering similar multidimensional trajectories’. 18th Int. Conf. Data Engineering, 2002. Proc., San Jose, USA, 2002, pp. 673684.
    6. 6)
      • 9. Gunther, S., Rosen, J., Hannaford, B., et al: ‘The red dragon: a multi-modality system for simulation and training in minimally invasive surgery’, Stud. Health Technol. Inf., 2007, 125, pp. 149154.
    7. 7)
      • 5. Chmarra, M.K., Klein, S., de Winter, J.C., et al: ‘Objective classification of residents based on their psychomotor laparoscopic skills’, Surgical Endoscopy, 2010, 24, (5), pp. 10311039.
    8. 8)
      • 29. Lacquaniti, F., Terzuolo, C., Viviani, P.: ‘The law relating the kinematic and figural aspects of drawing movements’, Acta Psychol., 1983, 54, (1), pp. 115130.
    9. 9)
      • 26. Schwartz, A.B., Moran, D.W.: ‘Arm trajectory and representation of movement processing in motor cortical activity’, Eur. J. Neurosci., 2000, 12, (6), pp. 18511856.
    10. 10)
      • 40. Pham, Q.-C., Nakamura, Y.: ‘A new trajectory deformation algorithm based on affine transformations’. Proc. Twenty-Third Int. Joint Conf. Artificial Intelligence, Beijing, China, 2013, pp. 30373041.
    11. 11)
      • 14. Yang, J., Li, Y., Wang, K., et al: ‘Mixed signature: an invariant descriptor for 3d motion trajectory perception and recognition’, Math. Probl. Eng., 2011, 2012, pp. 129.
    12. 12)
      • 4. Hwang, H., Lim, J., Kinnaird, C., et al: ‘Correlating motor performance with surgical error in laparoscopic cholecystectomy’, Surgical. Endoscopy Other Interv. Tech., 2006, 20, (4), pp. 651655.
    13. 13)
      • 32. de'Sperati, C., Viviani, P.: ‘The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements’, J. Neurosci., 1997, 17, (10), pp. 39323945.
    14. 14)
      • 15. Wu, X., Mao, X., Chen, L., et al: ‘Trajectory-based view-invariant hand gesture recognition by fusing shape and orientation’, IET Comput. Vis., 2015, 9, (6), pp. 797805.
    15. 15)
      • 17. Jiang, F., Wang, C., Gao, Y., et al: ‘Discriminating features learning in hand gesture classification’, IET Comput. Vis., 2015, 9, (5), pp. 673680.
    16. 16)
      • 24. Rautaray, S.S., Agrawal, A.: ‘Vision based hand gesture recognition for human computer interaction: a survey’, Artif. Intell. Rev., 2015, 43, (1), pp. 154.
    17. 17)
      • 37. Viviani, P., Cenzato, M.: ‘Segmentation and coupling in complex movements’, J. Exp. Psychol., Human Percept. Perform., 1985, 11, (6), p. 828.
    18. 18)
      • 43. ‘Optitrack motive software’. Available at https://www.naturalpoint.com/optitrack/products/motive, accessed 22 July 2014.
    19. 19)
      • 1. Albassit, L., Poisson, G., Vieyres, P.: ‘Kinematics of a dedicated 6 d of robot for tele-echography’. 11th Int. Conf. Advanced Robotics, University of Coimbra, Portugal, 2003.
    20. 20)
      • 2. Pierrot, F., Dombre, E., Teot, L., et al: ‘Robotized reconstructive surgery: ongoing study and first results’. IEEE Int. Conf. Robotics and Automation, 2000. Proc. ICRA'00, San Francisco, USA, 2000, vol. 2, pp. 16151620.
    21. 21)
      • 7. Lamata, P., Gómez, E.J., Lamata, F., et al: ‘Understanding perceptual boundaries in laparoscopic surgery’, IEEE Trans. Biomed. Eng., 2008, 55, (3), pp. 866873.
    22. 22)
      • 11. Cotin, S., Stylopoulos, N., Ottensmeyer, M., et al: ‘Metrics for laparoscopic skills trainers: The weakest link!’. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2002, 2002, pp. 3543.
    23. 23)
      • 16. Lin, Y.-C., Yang, B.-S., Lin, Y.-T., et al: ‘Human recognition based on kinematics and kinetics of gait’, J. Med. Biol. Eng., 2011, 31, (4), pp. 255263.
    24. 24)
      • 6. Xeroulis, G., Dubrowski, A., Leslie, K.: ‘Simulation in laparoscopic surgery: a concurrent validity study for FLS’, Surgical Endoscopy, 2009, 23, (1), pp. 161165.
    25. 25)
      • 23. Cifuentes, J., Boulanger, P., Pham, M.T., et al: ‘Automatic gesture analysis using constant affine velocity’. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual Int. Conf. IEEE, Chicago, USA, 2014, pp. 18261829.
    26. 26)
      • 39. Maoz, U., Flash, T.: ‘Spatial constant equi-affine speed and motion perception’, J. Neurophysiol., 2014, 111, (2), pp. 336349.
    27. 27)
      • 18. Reiley, C.E., Lin, H.C., Yuh, D.D., et al: ‘Review of methods for objective surgical skill evaluation’, Surgical Endoscopy, 2011, 25, (2), pp. 356366.
    28. 28)
      • 22. Sielhorst, T., Blum, T., Navab, N.: ‘Synchronizing 3d movements for quantitative comparison and simultaneous visualization of actions’. Proc. 4th IEEE/ACM Int. Symp. Mixed and Augmented Reality, Vienna, Austria, 2005, pp. 3847.
    29. 29)
      • 34. Dayan, E., Casile, A., Levit-Binnun, N., et al: ‘Neural representations of kinematic laws of motion: evidence for action-perception coupling’, Proc. Natl. Acad. Sci. USA, 2007, 104, (51), pp. 2058220587.
    30. 30)
      • 44. Hand, D.J., Mannila, H., Smyth, P.: ‘Principles of data mining’, Chapter Search and Optimization Methods (MIT Press, Cambridge, CA, 2001), pp. 253260.
    31. 31)
      • 25. Yang, S., Premaratne, P., Vial, P.: ‘Hand gesture recognition: An overview’. 2013 5th IEEE Int. Conf. Broadband Network & Multimedia Technology (IC-BNMT), Guilin, China, 2013, pp. 6369.
    32. 32)
      • 41. Pollick, F.E., Maoz, U., Handzel, A.A., et al: ‘Three-dimensional arm movements at constant equi-affine speed’, Cortex, 2009, 45, (3), pp. 325339.
    33. 33)
      • 20. Rosen, J., Chang, L., Brown, J.D., et al: ‘Minimally invasive surgery task decomposition-etymology of endoscopic suturing’, Stud. Health Technol. Inf., 2003, pp. 295301.
    34. 34)
      • 38. Maoz, U., Berthoz, A., Flash, T.: ‘Complex unconstrained three-dimensional hand movement and constant equi-affine speed’, J. Neurophysiol., 2009, 101, (2), pp. 10021015.
    35. 35)
      • 33. Vieilledent, S., Kerlirzin, Y., Dalbera, S., et al: ‘Relationship between velocity and curvature of a human locomotor trajectory’, Neurosci. Lett., 2001, 305, (1), pp. 6569.
    36. 36)
      • 35. Flash, T., Handzel, A.A.: ‘Affine differential geometry analysis of human arm movements’, Biol. Cybern., 2007, 96, (6), pp. 577601.
    37. 37)
      • 3. Rosen, J., Solazzo, M., Hannaford, B., et al: ‘Task decomposition of laparoscopic surgery for objective evaluation of surgical residents’ learning curve using hidden Markov model’, Comput. Aided Surg., 2002, 7, (1), pp. 4961.
    38. 38)
      • 30. Pham, Q.-C., Bennequin, D.: ‘Affine invariance of human hand movements: a direct test’, arXiv preprint arXiv:1209.1467, 2012.
    39. 39)
      • 31. Viviani, P., Terzuolo, C.: ‘The organization of movement in handwriting and typing’, Lang. Prod., 1983, 2, pp. 103146.
    40. 40)
      • 36. Viviani, P.: ‘Do units of motor action really exist’, Exp. Brain Res., 1986, 15, pp. 201215.
    41. 41)
      • 8. Richards, C., Rosen, J., Hannaford, B., et al: ‘Skills evaluation in minimally invasive surgery using force/torque signatures’, Surgical Endoscopy, 2000, 14, (9), pp. 791798.
    42. 42)
      • 12. Dubrowski, A., Sidhu, R., Park, J., et al: ‘Quantification of motion characteristics and forces applied to tissues during suturing’, Am. J. Surg., 2005, 190, (1), pp. 131136.
    43. 43)
      • 28. Abend, W., Bizzi, E., Morasso, P.: ‘Human arm trajectory formation’, Brain, 1982, 105, (Pt 2), pp. 331348.
    44. 44)
      • 27. Morasso, P.: ‘Spatial control of arm movements’, Exp. Brain Res., 1981, 42, (2), pp. 223227.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0373
Loading

Related content

content/journals/10.1049/iet-smt.2017.0373
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address