access icon free Monitoring and measurement of high-frequency oscillatory transient recovery voltage of circuit breakers

Studying the characteristics of transient recovery voltage (TRV) becomes mandatory for selecting an appropriate circuit breaker (CB) in terms of protection and control of the power system network. A CB may fail to interrupt the short circuit faults if its rated TRV characteristic is lower than that of the power system characteristics. This paper aims to extract the net TRV waveform imposed on the breaker contacts without any prior knowledge about the system parameters. Better accuracy is achieved in the measurement of TRV parameters because the power frequency component superimposed on the raw waveform has been removed. Based on the concept of the second order generalized integrator-adaptive notch filter (SOGI-ANF), the behaviour of the TRV over time has been studied. The prominent advantage of the presented method is that it is independent from the circuit configuration and voltage and thus can be performed online on different types of power networks. The adaptive feature of the SOGI-ANF and its simple structure make it a suitable tool for analysis of TRV in power system networks. The real-time implementation of the SOGI-ANF has been obtained using an STM32F4 Discovery microcontroller board and experimental results show the effectiveness of the proposed method.

Inspec keywords: microcontrollers; frequency measurement; voltage measurement; adaptive filters; notch filters; circuit breakers

Other keywords: high-frequency oscillatory transient recovery voltage measurement; second-order generalised integrator-adaptive notch filter; CB; circuit breaker; SOGI-ANF; TRV characteristics; short-circuit fault; STM32F4 discovery microcontroller board; power system network

Subjects: Time and frequency measurement; Voltage measurement; Switchgear; Frequency measurement; Measurement of basic electric and magnetic variables; Microprocessors and microcomputers

References

    1. 1)
      • 12. Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P.K., et al: ‘Addressing DC component in PLL and notch filter algorithms’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 7886.
    2. 2)
      • 7. Faried, S.O., Elsamahy, M.: ‘Incorporating superconducting fault current limiters in the probabilistic evaluation of transient recovery voltage’, IET Gener. Transm. Distrib., 2011, 5, (1), pp. 101107.
    3. 3)
      • 15. Rodrıguez, P., Pou, J., Bergas, J., et al: ‘Decoupled double synchronous reference frame PLL for power converters control’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 584592.
    4. 4)
      • 11. IEEE standard for AC high-voltage circuit breakers rated on a symmetrical current basis – preferred ratings and related required capabilities for voltages above 1000 V. IEEE Standard C37.06-2009, pp. 146.
    5. 5)
      • 5. IEEE guide for the application of transient recovery voltage for AC high-voltage circuit breakers, 2011, IEEE Standard C37.011-2011, 2011.
    6. 6)
      • 13. Rodrıguez, P., Luna, A., Munoz-Aguilar, R.S., et al: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 99112.
    7. 7)
      • 16. Ghadiri-Modarres, M., Mojiri, M., Karimi-Ghartemani, M.: ‘New adaptive algorithm for delay estimation of sinusoidal signals with unknown frequency’, IEEE Trans. Instrum. Meas., 2015, 64, (9), pp. 23602366.
    8. 8)
      • 3. Shipp, D.D., Dionise, T.J., Lorch, B.V., et al: ‘Transformer failure due to circuit-breaker-induced switching transients’, IEEE Trans. Ind. Appl, 2011, 47, (2), pp. 707718.
    9. 9)
      • 10. Milanovic, J.V., Meyer, J., Ball, R.F., et al: ‘International industry practice on power-quality monitoring’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 934941.
    10. 10)
      • 4. Badrzadeh, B.: ‘Transient recovery voltages caused by capacitor switching in wind power plants’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 28102819.
    11. 11)
      • 17. Mansouri, M., Mojiri, M., Ghadiri-Modarres, M., et al: ‘Estimation of electromechanical oscillations from phasor measurements using second-order generalized integrator’, IEEE Trans. Instrum. Meas., 2015, 64, (4), pp. 943950.
    12. 12)
      • 20. Microelectronics ST. Discovery kit for STM32F407/417 line. STM32F4 discovery datasheet, 2014.
    13. 13)
      • 14. Mojiri, M., Karimi-Ghartemani, M., Bakhshai, A.: ‘Processing of harmonics and interharmonics using an adaptive notch filter’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 534542.
    14. 14)
      • 9. Huang, D., Shu, S.S., Ruan, J.: ‘Transient recovery voltage distribution ratio and voltage sharing measure of double- and triple-break vacuum circuit breakers’, IEEE Trans. Compon. Packag. Manuf. Technol., 2016, 6, (4), pp. 545552.
    15. 15)
      • 8. Bagherpoor, A., Rahimi-Pordanjani, S., Razi-Kazemi, A.A., et al: ‘Online condition assessment of interruption chamber of gas circuit breakers using arc voltage measurement’, IEEE Trans. Power Deliv., 2017, 32, (4), pp. 17761783.
    16. 16)
      • 6. Dufournet, D., Hu, J.: ‘Revision of IEEE C37.011 guide for the application of transient recovery voltages for AC high-voltage circuit breakers’, IEEE Trans. Power Deliv., 2011, 27, (2), pp. 10181022.
    17. 17)
      • 2. Swindler, D.L., Schwartz, P., Hamer, P.S., et al: ‘Transient recovery voltage considerations in the application of medium-voltage circuit breakers’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 383388.
    18. 18)
      • 1. Rifaat, R., Lally, T.S., Hong, J.: ‘Circuit breaker transient recovery voltage requirements for medium voltage systems with NRG’. 2013 IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, USA, 2013.
    19. 19)
      • 18. Singh, U., Narain Singh, S.: ‘Application of fractional Fourier transform for classification of power quality disturbances’, IET Sci. Meas. Technol., 2017, 11, (1), pp. 6776.
    20. 20)
      • 19. Masoum, M.A.S., Jamali, S., Ghaffarzadeh, N.: ‘Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks’, IET Sci. Meas. Technol., 2010, 4, (4), pp. 193205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0305
Loading

Related content

content/journals/10.1049/iet-smt.2017.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading