access icon free Accelerating frequency domain dielectric spectroscopy measurements on insulation of transformers through system identification

Frequency domain dielectric spectroscopy (FDS) is a non-destructive method widely used to evaluate the state of dielectric materials. Traditional FDS measurement is conducted in frequency sweep mode between 1 kHz and 1 mHz. However, this method requires long measurement time when sweeping in low frequencies (1 mHz–1 Hz), thereby limiting its field applications. Hammerstein model is selected as the mathematical model for insulation systems according to known property of dielectric and established based on system identification theory. An equivalent mathematical model fitting >97% with the insulation system is obtained. The equivalent model can be used to calculate dielectric response parameters and construct an FDS. The proposed method requires 10 min to obtain dielectric response parameters under any frequency excitation in the low-frequency section. The measurement time decreases by up to 90% compared with that of traditional FDS. Comparison experiments are conducted between system identification method and traditional FDS measurement applied to different insulation systems, such as insulation pressboards, testing transformers, and field power transformers. Results show that frequency responses are consistent between the equivalent model and insulation system, ensuring the accuracy of FDS curve obtained by the proposed method.

Inspec keywords: power transformer insulation; frequency-domain analysis; identification; power transformer testing; dielectric measurement; spectroscopy; dielectric materials; frequency measurement

Other keywords: dielectric material; time 10 min; insulation pressboard; field power transformer; Hammerstein model; transformer insulation system; FDS measurement; frequency sweep mode; equivalent mathematical model; frequency 1 kHz to 1 mHz; frequency response; system identification theory; accelerating frequency domain dielectric spectroscopy measurement; transformer testing; nondestructive method

Subjects: Frequency measurement; Mathematical analysis; Transformers and reactors; Dielectric materials and properties; Dielectric variables measurement; Measurement of basic electric and magnetic variables; Time and frequency measurement; Insulation and insulating coatings

References

    1. 1)
      • 6. Pradhan, A. K., Chatterjee, B., Dey, D., et al: ‘Time growing frequency sweep signal based insulation condition monitoring in frequency domain spectroscopy’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 18981906.
    2. 2)
      • 12. Wu, J., Yan, Q., Wu, X.: ‘System identification of one historical bridge using dynamic test data’, Arab. J. Sci. Eng., 2017, 42, (9), pp. 41454155.
    3. 3)
      • 16. Ding, F., Peter, X., Liu, C., et al: ‘Identification methods for Hammerstein nonlinear systems’, Digit. Signal Process., 2011, 21, (2), pp. 215238.
    4. 4)
      • 10. Kaufmann, F.: ‘Verfahren und Vorrichtung zum Prüfen Einer Elektrotechnischen Einrichtung’. European Patent EP2093577, August 2009.
    5. 5)
      • 13. Miao, B., Regan, Z., Maksimovic, D.: ‘System identification of power converters with digital control through cross-correlation methods’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10931099.
    6. 6)
      • 21. Godfrey, K. R.: ‘Introduction to binary signals used in system identification’, Proc. Int. Conf. Control, 1991, 1, pp. 161166.
    7. 7)
      • 15. Schenkman, E.: ‘The Weierstrass approximation theorem’, Am. Math. Mon., 1972, 79, (1), pp. 6566.
    8. 8)
      • 3. Gao, J., Yang, L., Youyuan, W., et al: ‘Condition diagnosis of transformer oil-paper insulation using dielectric response fingerprint characteristics’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 12071218.
    9. 9)
      • 19. Mete, S., Ozer, S., Zorlu, H.: ‘System identification using Hammerstein model optimized with differential evolution algorithm’, AEU – Int. J. Electron. C, 2016, 70, (12), pp. 16671675.
    10. 10)
      • 2. Gao, J., Yang, L., Youyuan, W., et al: ‘Quantitative evaluation of ageing condition of oil-paper insulation using frequency domain characteristic extracted from modified Cole-Cole model’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 26942702.
    11. 11)
      • 22. Chittora, P., Singh, A., Singh, M.: ‘Gauss–Newton-based fast and simple recursive algorithm for compensation using shunt active power filter’, IET Gener. Transm. Distrib., 2017, 11, (6), pp. 15211530.
    12. 12)
      • 1. Liao, R., Hao, J., Chen, G., et al: ‘Quantitative analysis of ageing condition of oil-paper insulation by frequency domain spectroscopy’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 821830.
    13. 13)
      • 20. Xiaodong, N., Ming, Z. Y., Yusheng, L., et al: ‘Nonlinear identification of laster welding process’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 927934.
    14. 14)
      • 9. Kaufmann, F., Koch, M.: ‘Transforming dielectric response measurements from time to frequency domain’. Proc. 21st Nordic Insulation Symp., Gothenburg, Sweden, 2009, p. 4.1.
    15. 15)
      • 18. Ma, L., Liu, X.: ‘A nonlinear recursive instrumental variables identification method of Hammerstein ARMAX system’, Nonlinear Dyn., 2014, 79, (2), pp. 16011613.
    16. 16)
      • 4. Sonerud, B., Bengtsson, T., Blennow, J., et al: ‘Dielectric response measurements utilizing semi-square voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 920926.
    17. 17)
      • 8. Jaya, M., Leibfried, T.: ‘Accelerating dielectric response measurements on power transformers – part II: a regression approach’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 20952100.
    18. 18)
      • 11. Borsi, H., Gockenbach, E., Krüger, M.: ‘Verfahren und Vorrichtung zur Messung einer dielektrischen Antwort eines elektrischen Isoliersystems’. European Patent EP1729139A3, December 2006.
    19. 19)
      • 25. Pradhan, A., Koley, C., Chatterjee, B., et al: ‘Non-linear modeling of oil-paper insulation for condition assessment using non-sinusoidal excitation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 21652175.
    20. 20)
      • 5. Chatterjee, S., Pradhan, A. K., Dalai, S., et al: ‘Reducing frequency domain spectroscopy measurement time for condition monitoring of transformer oil-paper insulation using non-sinusoidal excitations’, IET Sci. Meas. Technol., 2017, 11, (2), pp. 204212.
    21. 21)
      • 23. Oliveira, P. R.: ‘Convergence of the Gauss–Newton method for a special class of systems of equations under a majorant condition’, Optimization, 2012, 64, (3), pp. 577594.
    22. 22)
      • 24. Wang, Y.: ‘On efficiency properties of an r-square coefficient based on final prediction error’, Stat. Probab. Lett., 2016, 83, (10), pp. 22762281.
    23. 23)
      • 7. Jaya, M., Geibler, D., Leibfried, T.: ‘Accelerating dielectric response measurements on power transformers – part I: a frequency-domain approach’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 14691473.
    24. 24)
      • 14. Saha, T. K., Purkait, P., Muller, F.: ‘Deriving an equivalent circuit of transformers insulation for understanding the dielectric response measurements’, IEEE Trans. Power Deliv., 2013, 20, (1), pp. 149157.
    25. 25)
      • 17. Elloumi, M., Kamoun, S.: ‘Design of self-tuning regulator for large-scale interconnected Hammerstein systems’, J. Control Sci. Eng., 2016, 2016, (2), pp. 113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0253
Loading

Related content

content/journals/10.1049/iet-smt.2017.0253
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading