access icon free Effect of temperature on AC breakdown voltage of nanofilled transformer oil

Studying the effect of adding nanosized ZrO2 to mineral transformer oil on the AC breakdown voltage is presented. The study is carried out considering different concentration levels of nanosized ZrO2. These concentrations are 0, 0.001, 0.002, 0.003 and 0.006%w. The AC breakdown voltage of both nanofilled and base oil is measured according ASTM D1816 standard at room temperature. The evaluation is carried out based on AC breakdown voltage for the nanofilled and base oil considering average and Weibull statistical techniques. Both 50 and 10% breakdown voltage probabilities are obtained and analysed for all samples. Also, the effect of temperature (to take the effect of real operating conditions) on breakdown voltage of base and nanofilled oil is experimentally evaluated. The studied temperatures are 50, 80 and 130°C. The obtained results show that the performance of nanoparticles is significantly affected by increasing the temperature of nanofilled transformer oil. Finally, a proposed mechanism for the effect of temperature on the nanofluids breakdown strength is introduced.

Inspec keywords: transformer oil; electric breakdown; minerals; zirconium compounds; measurement standards; statistical analysis; voltage measurement; probability

Other keywords: temperature 80 degC; temperature 293 K to 298 K; temperature 130 degC; mineral; nanosized effect; nanoparticle; temperature effect; nanofilled transformer oil; ZrO2; nanofluid breakdown strength; nanofilled oil; temperature 50 degC; ASTM D1816 standard; base oil; AC breakdown voltage measurement; probability; Weibull statistical technique

Subjects: Voltage measurement; Measurement of basic electric and magnetic variables; Probability theory, stochastic processes, and statistics; Measurement standards and calibration; Dielectric breakdown and discharges; Transformers and reactors; Measurement standards and calibration; Organic insulation; Other topics in statistics

References

    1. 1)
      • 9. Abd-Elhady, A.M., Ibrahim, M.E., Taha, T.A., et al: ‘Dielectric and thermal properties of transformer oil modified by semiconductive CdS quantum dots’, J. Electron. Mater., 2016, 45, (10), pp. 47554761.
    2. 2)
      • 19. Kalteh, M., Abbassi, A., Saffar-Awal, M., et al: ‘Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink’, Appl. Therm. Eng., 2012, 36, pp. 260268.
    3. 3)
      • 14. Jin, H., Andritsch, T., Morshuis, P.H.F., et al: ‘AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids’. IEEE Conf. Electrical Insulation Dielectric Phenomena (CEIDP), Canada, 2012, pp. 902905.
    4. 4)
      • 21. Ibrahim, M.E., Abd-Elhady, A.M., Izzularab, M.A.: ‘Effect of nanoparticles on transformer oil breakdown strength: experiment and theory’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 839845.
    5. 5)
      • 5. Vladimir, S., Arne, H., Arnold, R., et al: ‘AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles’. IEEE Int. Symp. Electrical Insulation, Arlington, Virginia, USA, 1998, pp. 619622.
    6. 6)
      • 1. Du, Y., Lv, Y., Li, C., et al: ‘Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids’, J. Appl. Phys., 2011, 110, p. 104104.
    7. 7)
      • 22. Lewand, L.: ‘Understanding water in transformer systems’ (International Electrical Testing Association (NETA), 2002), pp. 14.
    8. 8)
      • 3. Liu, J., Zhou, L.J., Wu, G.N., et al: ‘Dielectric frequency response of oil-paper composite insulation modified by nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (2), pp. 510520.
    9. 9)
      • 4. Zhou, Y.X., Wang, Y.S., Tian, J.H., et al: ‘Breakdown characteristics in transformer oil modified by nanoparticles’, High Volt. Eng., 2010, 36, (5), pp. 11551159(in Chinese).
    10. 10)
      • 23. Badr, A.M., Elshaikh, H.A., Ashraf, I.M.: ‘Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals’, J. Modern Phys., 2011, 2, (1), pp. 1225.
    11. 11)
      • 11. Yue-fan, D., Yv-zhen, L., Chengrong, L., et al: ‘Effect of semiconductive nanoparticles on insulating performances of transformer oil’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 770776.
    12. 12)
      • 8. Atiya, E.G., Mansour, D.E.A., Khattab, R.M., et al: ‘Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 24632472.
    13. 13)
      • 24. Jung, J.-W., Jung, J.-S.: ‘The effect of thermal ageing on the electrical characteristics of insulating oil for pole transformers’. 2008 Int. Conf. Condition Monitoring and Diagnosis, Beijing, China, 2008, April 21–24.
    14. 14)
      • 6. Sartoratto, P.P.C., Neto, A.V.S., Lima, E.C.D., et al: ‘Preparation and electrical properties of oil-based magnetic fluids’, J. Appl. Phys., 2005, 97, (10), p. 10Q917.
    15. 15)
      • 2. Segal, V., Hjortsberg, A., Rabinovich, A., et al: ‘AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles’. IEEE Int. Symp. Electrical Insulation, 1998, Vol2, pp. 619622.
    16. 16)
      • 15. Katiyar, A., Dhar, P., Nandi, T., et al: ‘Effects of nanostructure permittivity and dimensions on the increased dielectric strength of nano insulating oils’, Colloids Surf. A, 2016, 509, pp. 235243.
    17. 17)
      • 18. Jin, H., Andritsch, T., Tsekmes, I.A., et al: ‘Properties of mineral Oil based silica nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 11001108.
    18. 18)
      • 7. Pugazhendhi, S.C.: ‘Experimental evaluation on dielectric and thermal characteristics of nano filler added transformer oil’. Int. Conf. High Voltage Engineering and Application, Shanghai, China, September 17–20, 2012.
    19. 19)
      • 13. Mansour, D.A., Atiya, E.G., Khattab, R.M., et al: ‘Effect of titania nanoparticles on the dielectric properties of transformer oil-based nanofluids’. IEEE CEIDP 2012 in Montreal, Québec, Canada, 2012, pp. 295298.
    20. 20)
      • 12. Zhaotao, Z., Jian, L., Pin, Z., et al: ‘Electrical properties of nano-modified insulating vegetable oil’. IEEE Conf. Electrical, Insulation Dielectric Phenomena (CEIDP), 2010, pp. 14.
    21. 21)
      • 20. Sima, W., Shi, J., Yang, Q., et al: ‘Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 380390.
    22. 22)
      • 10. Peppas, G.D, Charalampakos, V.P., Pyrgioti, E.C., et al: ‘Statistical investigation of AC breakdown voltage of nanofluids compared with mineral and natural ester oil’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 644652.
    23. 23)
      • 16. Guinier, A.: ‘X-ray diffraction in crystals, imperfect crystals and amorphous Bodies’ (W.H. Freeman, San Franciso, CA, 1963), p. 124.
    24. 24)
      • 17. Martin, D., Wang, Z.D.: ‘Statistical analysis of the AC breakdown voltages of ester based transformer oils’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 10441050.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0217
Loading

Related content

content/journals/10.1049/iet-smt.2017.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading