Your browser does not support JavaScript!

Radio location of partial discharge sources: a support vector regression approach

Radio location of partial discharge sources: a support vector regression approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Partial discharge (PD) can provide a useful forewarning of asset failure in electricity substations. A significant proportion of assets are susceptible to PD due to incipient weakness in their dielectrics. This study examines a low cost approach for uninterrupted monitoring of PD using a network of inexpensive radio sensors to sample the spatial patterns of PD received signal strength. Machine learning techniques are proposed for localisation of PD sources. Specifically, two models based on support vector machines are developed: support vector regression (SVR) and least-squares support vector regression (LSSVR). These models construct an explicit regression surface in a high-dimensional feature space for function estimation. Their performance is compared with that of artificial neural network (ANN) models. The results show that both SVR and LSSVR methods are superior to ANNs in accuracy. LSSVR approach is particularly recommended as practical alternative for PD source localisation due to its low complexity.


    1. 1)
      • 36. Shi, K., Ma, Z., Zhang, R., et al: ‘Support vector regression based indoor location in IEEE 802.11 environments’, Mob. Inf. Syst., 2015, 2015, p. 14.
    2. 2)
      • 38. Junshui, M., James, T., Simon, P.: ‘Accurate on-line support vector regression’, Neural Comput., 2003, 15, (11), pp. 26832703.
    3. 3)
      • 23. Roj, J.: ‘Estimation of the artificial neural network uncertainty used for measurand reconstruction in a sampling transducer’, IET Sci. Meas. Tech., 2014, 8, (1), pp. 2329.
    4. 4)
      • 3. Rostaminia, R., Saniei, M., Vakilian, M., et al: ‘Accurate power transformer PD pattern recognition via its model’, IET Sci. Meas. Tech., 2016, 10, (7), pp. 745753.
    5. 5)
      • 26. Nerguizian, C., Despins, C., Affes, S.: ‘Indoor geolocation with received signal strength fingerprinting technique and neural networks’. Int. Conf. on Telecommunications, Berlin, 2004.
    6. 6)
      • 28. Hao, L., Lewin, P.L.: ‘Partial discharge source discrimination using a support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 189197.
    7. 7)
      • 15. Portugues, I.E., Moore, P.J., Carder, P.: ‘The use of radiometric partial discharge location equipment in distribution substations’. 18th Int. Conf. and Exhibition on Electricity Distribution, Turin, 2005.
    8. 8)
      • 4. Moore, P.J., Portugues, I.E., Glover, I.A.: ‘Partial discharge investigation of a power transformer using wireless wideband radio-frequency measurements’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 528530.
    9. 9)
      • 29. Ravikumar, B., Thukaram, D., Khincha, H.P.: ‘Application of support vector machines for fault diagnosis in power transmission system’, IET Gener. Transm. Distrib., 2008, 2, (1), pp. 119130.
    10. 10)
      • 20. Iorkyase, E.T., Tachtatzis, C., Atkinson, R.C., et al: ‘Localisation of partial discharge sources using radio fingerprinting technique’. Loughborough Antennas & Propagation Conf. (LAPC), Loughborough, 2015.
    11. 11)
      • 18. Boya, C., Rojas-Moreno, M.V., Ruiz-Llata, M., et al: ‘Location of partial discharges sources by means of blind source separation of UHF signals’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 23022310.
    12. 12)
      • 32. Bessedik, S.A., Hadi, H.: ‘Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation’, Electr. Power Syst. Res., 2013, 104, pp. 8792.
    13. 13)
      • 2. Illias, H.A., Tunio, M.A., Bakar, A.H.A., et al: ‘Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 451459.
    14. 14)
      • 6. Evagorou, D., Kyprianou, A., Lewin, P.L., et al: ‘Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network’, IET Sci. Meas. Tech., 2010, 4, (3), pp. 177192.
    15. 15)
      • 12. Tang, J., Xie, Y.: ‘Partial discharge location based on time difference of energy accumulation curve of multiple signals’, IET Electr. Power Appl., 2011, 5, (1), pp. 175180.
    16. 16)
      • 30. Khan, Y., Khan, A.A., Budiman, F.N., et al: ‘Partial discharge pattern analysis using support vector machine to estimate size and position of metallic particle adhering to spacer in GIS’, Electr. Power Syst. Res., 2014, 116, pp. 391398.
    17. 17)
      • 21. Genming, D., Zhang, J., Zhang, L., et al: ‘Overview of received signal strength based fingerprinting localization in indoor wireless LAN environments’. IEEE 5th Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), 2013.
    18. 18)
      • 19. Sinaga, H.H., Phung, B.T., Blackburn, T.R.: ‘Partial discharge localization in transformers using UHF detection method’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 18911900.
    19. 19)
      • 27. Jiang, E., Zan, P., Zhu, X., et al: ‘Rectal sensation function rebuilding based on optimal wavelet packet and support vector machine’, IET Sci. Meas. Tech., 2013, 7, (3), pp. 139144.
    20. 20)
      • 11. Hou, H., Sheng, G., Miao, P., et al: ‘Partial discharge location based on radio frequency antenna array in substation’, High Voltage Eng., 2012, 38, (6), pp. 13341340.
    21. 21)
      • 13. Hou, H., Sheng, G., Jiang, X.: ‘Robust time delay estimation method for locating UHF signals of partial discharge in substation’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 19601968.
    22. 22)
      • 39. Wu, Z., Li, C., Yang, Z., et al: ‘Research on tourists’ positioning technology based on LSSVR’. IEEE Advanced Information Technology, Electronic and Automation Control Conf., Chongqing, 2015.
    23. 23)
      • 24. Mohanty, S., Ghosh, S.: ‘Artificial neural networks modelling of breakdown voltage of solid insulating materials in the presence of void’, IET Sci. Meas. Tech., 2010, 4, (5), pp. 278288.
    24. 24)
      • 33. Basak, D., Pal, S., Patranabis, D.C.: ‘Support vector regression’, Neural Inf. Process. Lett. Rev., 2007, 11, (10), pp. 203224.
    25. 25)
      • 37. Bennett, K.P., Campbell, C.: ‘Support vector machines: hype or hallelujah?’, ACM SIGKDD Explor. Newslett., 2000, 2, (1), pp. 113.
    26. 26)
      • 22. Chuang, P.J., Jiang, Y.J.: ‘Effective neural network-based node localisation scheme for wireless sensor networks’, IET Wirel. Sensor Syst., 2014, 4, (2), pp. 97103.
    27. 27)
      • 8. Li, P., Zhou, W., Yang, S., et al: ‘Method for partial discharge localisation in air-insulated substations’, IET Sci. Meas. Tech., 2017, 11, (3), pp. 331338.
    28. 28)
      • 31. Ben-Hur, A., Horn, D., Siegelmann, H.T., et al: ‘Support vector clustering’, J. Mach. Learn. Res., 2002, 2, pp. 125137.
    29. 29)
      • 17. Hooshmand, R.A., Parastegari, M., Yazdanpanah, M.: ‘Simultaneous location of two partial discharge sources in power transformers based on acoustic emission using the modified binary partial swarm optimisation algorithm’, IET Sci. Meas. Tech., 2013, 7, (2), pp. 112118.
    30. 30)
      • 1. Hou, H., Sheng, G., Jiang, X.: ‘Localization algorithm for the PD source in substation based on L-shaped antenna array signal processing’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 472479.
    31. 31)
      • 34. Zhang, H.R., Wang, X.D., Zhang, C.J., et al: ‘Robust identification of non-linear dynamic systems using support vector machine’, IEE Proc. Sci. Meas. Tech., 2006, 153, (3), pp. 125129.
    32. 32)
      • 16. Zhu, M.X., Wang, Y.B., Liu, Q., et al: ‘Localization of multiple partial discharge sources in air-insulated substation using probability-based algorithm’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 157166.
    33. 33)
      • 14. Judd, M.D.: ‘Radiometric partial discharge detection’. Int. Conf. on Condition Monitoring and Diagnosis, Beijing, 2008.
    34. 34)
      • 7. Lu, Y., Tan, X., Hu, X.: ‘PD detection and localisation by acoustic measurements in an oil-filled transformer’, IEE Proc. – Sci. Meas. Tech., 2000, 147, (2), pp. 8185.
    35. 35)
      • 5. Mohamed, F.P., Siew, W.H., Soraghan, J.J.: ‘Online partial discharge detection in medium voltage cables using protection and instrument current transformers’. 2nd UHVNet Colloquium on High Voltage Measurement and Insulation Research, Glasgow, 2009.
    36. 36)
      • 10. Portugues, I.E., Moore, P.J., Glover, I.A., et al: ‘RF-based partial discharge early warning system for air-insulated substations’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 2029.
    37. 37)
      • 9. Mohamed, F.P., Siew, W.H., Soraghan, J.J., et al: ‘Remote monitoring of partial discharge data from insulated power cables’, IET Sci. Meas. Tech., 2014, 8, (5), pp. 319326.
    38. 38)
      • 35. Clarke, S.M., Griebsch, J.H., Simpson, T.W.: ‘Analysis of support vector regression for approximation of complex engineering analyses’, J. Mech. Des., 2005, 127, (6), pp. 10771087.
    39. 39)
      • 40. Mohanty, S., Gupta, K.K., Raju, K.S.: ‘Adaptive fault identification of bearing using empirical mode decomposition-principal component analysis-based average kurtosis technique’, IET Sci. Meas. Tech., 2017, 11, (1), pp. 3040.
    40. 40)
      • 25. Laoudias, C., Kemppi, P., Panayiotou, C.G.: ‘Localization using radial basis function networks and signal strength fingerprints in WLAN’. IEEE Global Telecommunications Conf., Honolulu, 2009.

Related content

This is a required field
Please enter a valid email address