access icon free Proposal of new windings for 5-X variable reluctance resolvers

Here, a new winding is proposed for 5-X variable reluctance resolver. In the proposed winding method, all the stator teeth are devoted to the signal windings and a peripheral slot is added to the stator core including two excitation coils. The performance of the resolver is discussed using the proposed winding and all previous winding methods. It is shown the position error of the resolver is less than that of the previously proposed methods and it can offer much simpler manufacturing process and consequently lower cost. All the analyses are performed using three-dimensional time stepping finite element method and finally, a prototype of the resolver is built and tested. The comparison between simulation and test results verifies the success of the proposed winding method.

Inspec keywords: coils; stators; cores; finite element analysis; reluctance machines

Other keywords: excitation coil; peripheral slot; 5-X variable reluctance resolver; stator teeth; signal winding method; stator core; three-dimensional time stepping finite element method

Subjects: Synchronous machines; Finite element analysis

References

    1. 1)
      • 15. Nasiri-Gheidari, Z., Alipour-Sarabi, R., Tootoonchian, F., et al: ‘Performance evaluation of disk type variable reluctance resolvers’, IEEE Sens. J., 2017, 17, (13), pp. 40374045.
    2. 2)
      • 3. Tootoonchian, F.: ‘Design, performance, and testing of a brushless axial flux resolver without rotor windings’, IEEE Sens. J., 2016, 16, (20), pp. 74647471.
    3. 3)
      • 10. Saneie, H., Nasiri-Gheidari, Z., Tootoonchian, F.: ‘An analytical model for performance prediction of linear resolver’, IET Electr. Power Appl., 2017, 11, (8), pp. 14571465.
    4. 4)
      • 12. Daniar, A., Nasiri-Gheidari, Z., Tootoonchian, F.: ‘Position error calculation of linear resolver under mechanical fault conditions’, IET Sci. Meas. Technol., 2017, 11, (7), pp. 948954.
    5. 5)
      • 22. Shang, J., Wang, H., Chen, M., et al: ‘The effects of stator and rotor eccentricities on measurement accuracy of axial flux variable-reluctance resolver with sinusoidal rotor’. 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014, pp. 12061209.
    6. 6)
      • 7. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al: ‘Effects of physical parameters on the accuracy of axial flux resolvers’, IEEE Trans. Magn., 2017, 53, (4), pp. 111, doi: 10.1109/TMAG.2016.2645163.
    7. 7)
      • 18. Kim, K.C.: ‘Analysis on the characteristics of variable reluctance resolver considering uneven magnetic fields’, IEEE Trans. Magn., 2013, 49, (7), pp. 38583861.
    8. 8)
      • 13. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘The influence of mechanical faults on the position error of an axial flux brushless resolver without rotor windings’, IET Electr. Power Appl., 2017, 11, (4), pp. 613621.
    9. 9)
      • 2. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘Axial flux resolver design techniques for minimizing position error due to static eccentricities’, IEEE Sens. J., 2015, 15, (7), pp. 40274034.
    10. 10)
      • 8. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al: ‘Analysis of winding configurations and slot-pole combinations in fractional-slots resolvers’, IEEE Sens. J., 2017, 17, (14), pp. 44204428.
    11. 11)
      • 9. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al: ‘Performance analysis of concentrated wound-rotor resolver for its applications in high pole number permanent magnet motors’, IEEE Sens. J., 2017, 17, (23), pp. 78777885.
    12. 12)
      • 11. Nasiri-Gheidari, Z.: ‘Design, performance analysis, and prototyping of linear resolvers’, IEEE Energy Convers., 2017, 32, (4), pp. 110.
    13. 13)
      • 17. Ge, X., Ahu, Z.Q.: ‘A novel design of rotor contour for variable reluctance resolver by injecting auxiliary air-gap permeance harmonics’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 345353.
    14. 14)
      • 19. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘A novel variable reluctance resolver with nonoverlapping tooth-coil windings’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 784794.
    15. 15)
      • 21. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘Analysis of windings in variable reluctance resolver’, IEEE Trans. Magn., 2015, 51, (5), pp. 19.
    16. 16)
      • 4. Nasiri-Gheidari, Z.: ‘Design, analysis, and prototyping of a new wound-rotor axial flux brushless resolver’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 276283, doi: 10.1109/TEC.2016.2604858.
    17. 17)
      • 25. Shi, T., Hao, Y., Jiang, G., et al: ‘A method of resolver-to-digital conversion based on square wave excitation’, IEEE Trans. Ind. Electron., to appear, DOI: 10.1109/TIE.2017.2782228.
    18. 18)
      • 16. Saneie, H., Nasiri-Gheidari, Z., Tootoonchian, F.: ‘Design-oriented modeling of axial-flux variable-reluctance resolver based on magnetic equivalent circuits and Schwarz–Christoffel mapping’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 43224330.
    19. 19)
      • 14. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘An optimized axial flux variable reluctance resolver with concentric windings’. 24th Iranian Conf. on Electrical Engineering (ICEE), Shiraz, Iran, 2016, pp. 12841290, doi: 10.1109/IranianCEE.2016.7585719.
    20. 20)
      • 24. Wu, Z., Li, Y.: ‘High-accuracy automatic calibration of resolver signals via two-step gradient estimators’, IEEE Sens. J., 2018, 18, (7), pp. 28832891.
    21. 21)
      • 1. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘A novel variable reluctance resolver for HEV/EV applications’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 28722880.
    22. 22)
      • 6. Tootoonchian, F., Nasiri-Gheidari, Z.: ‘Twelve-slot two-saliency variable reluctance resolver with nonoverlapping signal windings and axial flux excitation’, IET Electr. Power Appl., 2017, 11, (1), pp. 4962, doi: 10.1049/iet-epa.2016.0252.
    23. 23)
      • 5. Nasiri-Gheidari, Z., Tootoonchian, F., Zare, F.: ‘Design oriented technique for mitigating position error due to shaft run-out in sinusoidal-rotor variable reluctance resolvers’, IET Electr. Power Appl., 2017, 11, (1), pp. 132141, doi: 10.1049/iet-epa.2016.0316.
    24. 24)
      • 20. Jin, C.S., Jang, I.S., Lee, J., et al: ‘Proposal of improved winding method for VR resolver’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    25. 25)
      • 23. Jing, S., Hao, W., Weiqiang, W.: ‘The analysis of multi pole axial flux reluctance resolver with sinusoidal rotor’. Proc. ECCE, Harbin, China, 2012, pp. 12061209.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0149
Loading

Related content

content/journals/10.1049/iet-smt.2017.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading