access icon free Multipath conductors for EMI filter: recent developments

This study presents an overview of the multipath conductor concept and some recent developments of multipath conductors especially in the field of electromagnetic interference (EMI). Multipath conductors are made up of several layers of materials with different electromagnetic properties. The conductors are configured to conduct currents in parallel. These current may contain low-frequency desired currents and undesirable higher frequencies. These multipath conductors are used as a lowpass dissipative filter to reduce EMI in compact power electronics circuits by replacing the conventional filter. This new type of filtering structure has several advantages over the convention filters. The purpose of this study is to review the work done so far in terms of the analytical and software analysis of multipath conductor based EMI filters. This will create interest among the new researchers in this developing field by understanding the basic technique and applications to aid in their research further.

Inspec keywords: power electronics; low-pass filters; conductors (electric); electromagnetic interference; electromagnetic devices

Other keywords: multipath conductor concept; EMI filter; low pass dissipative filter; power electronics circuit; electromagnetic interference filter

Subjects: Conductors; Filters and other networks; Electromagnetic compatibility and interference; Power electronics, supply and supervisory circuits; Electromagnetic device applications

References

    1. 1)
      • 10. Brink, E.A.: ‘Aspects of electromagnetic field distributions in multipath conductive structures’. Dissertation, University of Witwatersrand, Johannesburg, South Africa, 2011.
    2. 2)
      • 14. Racasan, A., Munteanu, C., Topa, V., et al: ‘Advances on parasitic capacitance reduction of Emi filters’, Annals of the University of Craiova, Electrical Engineering series, No. 34, 2010.
    3. 3)
      • 15. Huang, H.F., Deng, L.Y., Hu, B.J., et al: ‘Techniques for improving the high-frequency performance of the planar CM EMI filter’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 901908.
    4. 4)
      • 17. Brink, E.A., Hofsajer, I.W.: ‘Analytical approach for determining the frequency-dependent characteristics of multipath conductive structures’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 58355845.
    5. 5)
      • 18. Botes, N.J.: ‘A design-oriented analytical approach to simplify the computational aspects of low pass planar multipath EMI’. Dissertation, University of Witwatersrand, Johannesburg, South Africa, 2015.
    6. 6)
      • 8. van Wyk, J.D.Jr., Cronje, W.A., van Wyk, J.D., et al: ‘Power electronic interconnects: skin- and proximity effect-based frequency selective multipath propagation’, IEEE Trans. Power Electron., 2005, 20, (3), pp. 600610.
    7. 7)
      • 6. Wolmarans, P.J., Van Wyk, J.D., Van Wyk, J.D.Jr., et al: ‘Technology for integrated RF-EMI transmission line filters for integrated power electronic modules’. IEEE Industry Applications Conf., 37th IAS Annual Meeting, Pittsburgh, PA, USA, 2002, vol. 3, pp. 17741780.
    8. 8)
      • 19. Hebedean, C., Munteanu, C., Racasan, A., et al: ‘Technologies to increase HF losses in planar structures and their limitations’. Optimization of Electrical and Electronic Equipment, Brasov, May, 2012, pp. 4853.
    9. 9)
      • 4. Biela, J., Wirthmueller, A., Waespe, R., et al: ‘Passive and active hybrid integrated EMI filters’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 13401349.
    10. 10)
      • 9. Ouyang, Z., Andersen, M.A.E.: ‘Overview of planar magnetic technology-fundamental properties’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 48884900.
    11. 11)
      • 16. Chen, H., Meng, P., Li, J., et al: ‘Series-connected grounding of common-mode EMI filter’, IEEE Trans. Electromagn. Compat., 2010, 52, (4), pp. 10661068.
    12. 12)
      • 12. Jong, E.D., Ferreira, J., Bauer, P.: ‘Improving the thermal management of AC-DC converters using integration technologies’. Proc. IEEE Industry Applications Conf., Seattle, WA, USA, October 2004, vol. 4, pp. 23152322.
    13. 13)
      • 7. Chen, W., Zhang, W., Yang, X., et al: ‘An experimental study of common- and differential-mode active EMI filter compensation characteristics’, IEEE Trans. Electromagn. Compat., 2009, 51, (3), pp. 683691.
    14. 14)
      • 13. Ouyang, Z., Thomsen, O.C., Andersen, M.A.E.: ‘Optimal design and tradeoffs analysis for planar’. Power Electronics Conf. (IPEC), Sapporo, June 2010, pp. 31663173.
    15. 15)
      • 2. Wang, F., Zhang, Z., Ericsen, T., et al: ‘Advances in power conversion and drives for shipboard systems’, Proc. IEEE, 2015, 103, (12), pp. 22852311.
    16. 16)
      • 5. Chen, R., Wyk, J.D.V., Wang, S., et al: ‘Improving the characteristics of integrated EMI filters by embedded conductive layers’, IEEE Trans. Power Electron., 2005, 20, (30), pp. 611619.
    17. 17)
      • 3. Jia, X., Xu, D., Du, S., et al: ‘A high power density and efficiency Bi-directional DC/DC converter for electric vehicles’. 9th Int. Conf. Power Electronics-ECCE Asia, Seoul, South Korea, June 2015, pp. 874880.
    18. 18)
      • 11. Zinal, S.: ‘Steady-state skin effect in multilayer-conductor coaxial lines’. Proc. 44th European Microwave Conf., Rome, Italy, 2014, pp. 402405.
    19. 19)
      • 1. Luo, F., Baisden, A.C., Boroyevich, D., et al: ‘Design of a hybrid busbar filter combining a transmission line filter and a one-turn inductor for DC-fed three-phase motor drive systems’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 55885602.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0148
Loading

Related content

content/journals/10.1049/iet-smt.2017.0148
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading