Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of an HV capacitor using the inherent advantage of charge simulation method and experimentations

Standard capacitors form an important component of the measurement and instrumentation in the electrical laboratory. A high-voltage (HV) standard capacitor of 100 pF, 12 kV (rms) is designed using the charge simulation method (CSM). CSM is a semi-analytical method and it provides inherent advantage in designing a capacitor from the first principle. The capacitance is obtained from the magnitude of the simulating charges of the CSM-based model and the corresponding potential. The design details of HV standard capacitor are discussed along with the analysis of the potential and the electric stress distribution. The electric stress everywhere in the capacitor, which is designed, is assured to be <5 kV/cm, which was set as the limiting (maximum permissible) stress. The capacitance of the fabricated unit is measured in the HV laboratory. The CSM-based result of the capacitance of the designed HV capacitor agree well with the results of the laboratory experimental measurement. The inherent advantage of CSM in designing a capacitor is confirmed by comparing with the results of method of moments (MoM).

References

    1. 1)
      • 11. Yi, Y., Zhang, C., Wang, L.: ‘Positive dc corona inception on dielectric-coated stranded conductors in air’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 557563.
    2. 2)
      • 24. Harrington, R.F.: ‘Field computation by moment methods’ (IEEE Press, 1993).
    3. 3)
      • 27. Guanggan, G.: ‘The effect of the electric field of the grounded electrode on the capacitance of compressed-gas capacitors’. Proc. Int. Conf. Precision Electromagnetic Measurements, Ottawa, Canada, June 1990, p. 362.
    4. 4)
      • 23. Latzel, H.G., Schon, K.: ‘Precise capacitance measurements of high-voltage compressed gas capacitors’, IEEE Trans. Instrum. Meas., 1987, IM-36, (2), pp. 381384.
    5. 5)
      • 5. Ghosh, S., Chakrabarty, A.: ‘Estimation of capacitance of different conducting bodies by the method of rectangular subareas’, J. Electrost., 2008, 66, (3–4), pp. 142146.
    6. 6)
      • 18. Kuffel, E., Zaengl, W.S., Kuffel, J.: ‘High voltage engineering: fundamental’ (Butterworth-Heinemann, 2000, 2nd edn.).
    7. 7)
      • 20. Abd Elrahman, M.K.: ‘Fully optimised charge simulation method by using particle swarm optimisation’, IET Sci. Meas. Technol., 2015, 9, (4), pp. 435442.
    8. 8)
      • 8. Abouelsaad, M.M.: ‘Modelling of corona discharge of a tri-electrode system for electrostatic separation processes’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 497504.
    9. 9)
      • 16. El-Mohandes, M.Th., Okubo, H.: ‘Error analysis based on the interaction between simulating charges in the CSM for the electric-field calculation of HV apparatus’, ETEP, 1994, 4, (6), pp. 565570.
    10. 10)
      • 17. Punekar, G.S.: ‘Charge simulation method in high voltage systems: investigations on errors, optimization and applications’. PhD thesis, IITK, India, 2009.
    11. 11)
      • 2. Naidu, M.S., Kamaraju, V.: ‘High voltage engineering’ (McGraw-Hill, New York, 1996, 2nd edn.).
    12. 12)
      • 12. Rankovic, A., Savic, M.S.: ‘Generalized charge simulation method for the calculation of the electric field in high voltage substations’, Electr. Eng., 2010, 92, (2), pp. 6977.
    13. 13)
      • 14. Rungis, J., Brown, D.E.: ‘Experimental study of factors affecting capacitance of high-voltage compressed-gas capacitors’, IEE Proc. Phys. Sci. Meas. Instrum. Manag. Educ. Rev., 1981, 128, (4), pp. 273277.
    14. 14)
      • 7. Singer, H., Steinbigler, H., Weiss, P.: ‘A charge simulation method for the calculation of high voltage fields’, IEEE Trans. Power Appl. Syst., 1974, PAS-93, (5), pp. 16601668.
    15. 15)
      • 4. Hayt, W.H.: ‘Engineering electromagnetics’ (McGraw-Hill, Auckland, 1981, 4th edn.).
    16. 16)
      • 1. Petersons, O., Anderson, W. E.: ‘A wide-range high voltage capacitance bridge with one PPM accuracy’, IEEE Trans. Instrum. Meas., 1975, IM-24, (4), pp. 336344.
    17. 17)
      • 13. Kishore, N.K., Punekar, G.S.: ‘On designing of a high voltage standard capacitor using a semi-analytical field computation method’. Proc. Electrostatics Joint Conf., WestLafayette, USA, June 2016, p. 05.
    18. 18)
      • 15. Hillhouse, D.L., Peterson, A.E.: ‘A 300-kV compressed gas standard capacitor with negligible voltage dependence’, IEEE Trans. Instrum. Meas., 1973, IM-22, (4), pp. 408416.
    19. 19)
      • 26. Anderson, W.E., Davis, R.S., Petersons, O., et al: ‘An international comparison of high voltage capacitor calibrations’, IEEE Trans. Power Appar. Syst., 1978, PAS-97, (4), pp. 12171223.
    20. 20)
      • 19. Benyoucef, D., Yousfi, M.: ‘Improved fictitious charge method for calculations of electric potential and field generated by point-to-plane electrodes’, J. Electrost., 2015, 76, pp. 2430.
    21. 21)
      • 3. Malik, H.N.: ‘A review of charge simulation method and its applications’, IEEE Electr. Insul., 1989, 24, (1), pp. 320.
    22. 22)
      • 10. El Dein, A.Z.: ‘Calculations of the charge distribution along multi-overhead transmission lines conductors’, IET Gener. Transm. Distrib., 2013, 7, (10), pp. 11161122.
    23. 23)
      • 9. He, J., Gorur, R.S.: ‘Charge simulation based electric field analysis of composite insulators for HVDC lines’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (6), pp. 25412548.
    24. 24)
      • 25. ‘Influence of standard capacitors on the quality of high voltage tests on electrical energy transmission equipment’, http://www.imeko.org/publications/wc-2006/PWC-2006-TC4-053u.pdf, accessed 16 March 2017.
    25. 25)
      • 21. Abd Elrahman, M.K.: ‘Adapting particle swarm optimisation for charge simulation method’, IET Sci. Meas. Technol., 2011, 5, (3), pp. 96101.
    26. 26)
      • 6. Liu, X., Wang, Y., Zhu, J., et al: ‘Calculation of capacitance in high-frequency transformer windings’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    27. 27)
      • 22. Abouelsaad, M.M., Abouelatta, M.A., Salama, A.R.: ‘Genetic algorithm-optimised charge simulation method for electric field modelling of plate-type electrostatic separators’, IET Sci. Meas. Technol., 2013, 7, (1), pp. 1622.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0121
Loading

Related content

content/journals/10.1049/iet-smt.2017.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address