Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Back-electromotive force analysis of permanent magnet micromotor using applicational 3D analytical model

Permanent magnet (PM) axial flux machines are well adopted in microelectromechanical systems application, which needs a short axial length. PM micromotors have special characteristics such as transition zone which made their analysis different from macro ones. Due to the three-dimensional (3D) nature of PM micromotors, analysis and design of these micromotors require a fast and adopted 3D analytical model. This study presents a new 3D analytical model for a PM micromotor. In the presented analytical model, the micromotor is divided into several radial slices to take into account a part of 3D effects. In each slice, magneto-quasi-static Maxwell's equations are solved and back-electromotive force voltage is calculated as the most important parameter of micromotors. The accuracy of the model is verified by experimental and a 3D finite-element method model. The universality of the presented analytical model is challenged by using micromotors with different PM shapes including circular and trapezoidal. The presented analytical model is much faster than the 3D finite element model, but has the same accuracy, which makes it suitable for sensitive analysis and optimisation procedures.

References

    1. 1)
      • 19. Ilka, R., Alinejad-Beromi, Y., Yaghobi, H., et al: ‘Design of slotless BLDC motor for eliminating cogging torque’, J. World Elect. Eng. Tech., 2014, 3, pp. 6773.
    2. 2)
      • 20. Das, S.: ‘Magnetic machines and power electronics for power MEMS applications’. PhD dissertation, Department of Electrical Engineering, MIT, Massachusetts, USA, 2005.
    3. 3)
      • 14. Lu, H., Zhu, J., Guo, Y.: ‘Development of a slotless tubular linear interior permanent magnet micromotor for robotic applications’, IEEE Trans. Magn., 2005, 41, (10), pp. 39883990.
    4. 4)
      • 13. Merzaghi, S., Koechli, C., Perriard, Y.: ‘Development of a hybrid MEMS BLDC micromotor’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 311.
    5. 5)
      • 5. Berg, U., Begemann, M., Hagemann, B., et al: ‘Series production and testing of a micro motor’. 6th Int. Conf. New Actuators (Actuator 98), Bremen, Germany, June 1998, pp. 552555.
    6. 6)
      • 21. Ayon, A.A., Zhang, X., Turner, K.T., et al: ‘Characterization of silicon wafer bonding for power MEMS applications’, Sens. Actuators, Phys. A, 2003, 103, pp. 18.
    7. 7)
      • 2. Sarajlic, E., Yamahata, C., Cordero, M., et al: ‘Three-phase electrostatic rotary stepper micromotor with a flexural pivot bearing’, J. Microelectromech. Syst., 2010, 19, (2), pp. 338349.
    8. 8)
      • 15. Das, S., Arnold, D.P., Zana, I., et al: ‘Microfabricated high-speed axial-flux multiwatt permanent-magnet generators—part I: modeling’, J. Microelectromech. Syst., 2006, 15, (5), pp. 13301350.
    9. 9)
      • 16. Ghalichechian, N., McCarthy, M., Beyaz, M.I., et al: ‘Measurement and modeling of friction in linear and rotary micromotors supported on microball bearings’. IEEE 21st Inter. Conf. on MicroElectroMechanical Systems (MEMS) 2008, Tucson, AZ, 13–17 January 2008, pp. 507510.
    10. 10)
      • 17. Moeneclaey, J., Tounzi, A.: ‘Numerical modeling of an electromagnetic micro-motor using 3D-FEM’. XXth Inter. Conf. on Electrical Machines (ICEM) 2012, Marseille, France, 2–5 September 2012, pp. 725730.
    11. 11)
      • 8. Worotyński, J., Turowski, M., Mendrela, E.A.: ‘The accuracy of calculation of magnetic fields, inductance and forces in electromagnetic devices using the reluctance network method’, Int. J. Comput. Math. Electr. Electron. Eng., 1994, 13, (1), pp. 159162.
    12. 12)
      • 18. Tiegna, H., Amara, Y., Barakat, G.: ‘A new quasi-3-D analytical model of axial flux permanent magnet machines’, IEEE Trans. Magn., 2014, 50, (2), pp. 817820.
    13. 13)
      • 10. Huang, Y., Ge, B., Dong, J., et al: ‘3-D analytical modeling of no-load magnetic field of ironless axial flux permanent magnet machine’, IEEE Trans. Magn., 2012, 48, (11), pp. 29292932.
    14. 14)
      • 4. Kamper, K.P., Ehrfeld, W., Hagemann, B., et al: ‘Electromagnetic permanent magnet micromotor with integrated micro gear box’. 5th Int. Conf. New Actuators (Actuator 96), Bremen, Germany, June 1996, pp. 429432.
    15. 15)
      • 7. Di Barba, P., Savini, A., Wiak, S.: ‘Field models in electricity and magnetism’ (Springer, New York, NY, USA, 2008).
    16. 16)
      • 22. Trumper, D.L., Kim, W.J., Williams, M.E.: ‘Design and analysis framework for linear permanent-magnet machines’, IEEE Trans. Ind. Appl., 1996, 32, (2), pp. 371379.
    17. 17)
      • 12. Koechlia, C., Perriard, Y.: ‘Analytical model for slotless permanent magnet axial flux motors’. IEEE Inter. Electric Machines & Drives Conf. (IEMDC) 2013, Chicago, IL, 12–15 May 2013, pp. 788792.
    18. 18)
      • 11. Tiegna, H., Bellara, A., Amaraand, Y., et al: ‘Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots’, IEEE Trans. Magn., 2012, 48, (3), pp. 12121226.
    19. 19)
      • 9. Hammond, P., Sykulski, J.K.: ‘Tubes and slices: a new way of teaching the principles of electric and magnetic fields’, IEEE Trans. Educ., 1992, 35, (4), pp. 300306.
    20. 20)
      • 3. Costamagna, E., Di Barba, P., Savini, A.: ‘Conformal mapping of doubly connected domains: an application to the modelling of an electrostatic micromotor’, IET Sci. Meas. Technol., 2009, 3, (5), pp. 334342.
    21. 21)
      • 6. Arnold, D.P., Das, S., Park, J.W., et al: ‘Microfabricated high-speed axial-flux multiwatt permanent-magnet generators; part II: design, fabrication, and testing’, J. Microelectromech. Syst., 2006, 15, (5), pp. 13511363.
    22. 22)
      • 1. Ghalichechian, N., Modafe, A., Lang, J.H., et al: ‘Dynamic characterization of a linear electrostatic micromotor supported on microball bearings’, Sens. Actuators, 2007, 136, (2), pp. 496503.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0112
Loading

Related content

content/journals/10.1049/iet-smt.2017.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address