http://iet.metastore.ingenta.com
1887

Method for estimation of location of the asymmetrical phase-to-ground faults existing during an overhead line energisation

Method for estimation of location of the asymmetrical phase-to-ground faults existing during an overhead line energisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fast and precise location of faults in power transmission lines is essentially important for fast line restoration. Widely used fault location methods based on impedance measurement and travelling wave analysis have some drawbacks leaving a lot of room for further research. This study proposes a novel method for estimation of the location of the asymmetrical phase-to-ground faults that exist during line energisation. The method is based on the empirical mode decomposition and its application relies on knowing the fundamental system parameters and frequency estimation of the analysed signal. It is simple to use while providing highly accurate results for overhead lines up to 80 km length.

References

    1. 1)
      • 1. Simab, M., Alvehag, K., Soder, L., et al: ‘Designing reward and penalty scheme in performance based regulation for electric distribution companies’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 893901.
    2. 2)
      • 2. IEEE Std C37.114-2004: ‘IEEE guide for determination fault location on AC transmission and distribution lines’, 2005, pp. 136.
    3. 3)
      • 3. Saha, M., Izykowski, J., Rosolowski, E.: ‘Fault location on power networks’ (Springer-Verlag, London, 2010).
    4. 4)
      • 4. Takagi, T., Yamakoshi, Y., Yamaura, Y., et al: ‘Development of a new type fault locator using the one-terminal voltage and current data’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, pp. 28922898.
    5. 5)
      • 5. Mora-Florez, J., Melendez, J., Carrillo-Caicedo, G.: ‘Comparison of impedance based fault location methods for power distribution systems’, Electr. Power Syst. Res., 2008, 78, (4), pp. 657667.
    6. 6)
      • 6. Lotfifard, S., Kezunovic, M., Mousavi, M.: ‘A systematic approach for ranking distribution systems fault location algorithms and eliminating false estimates’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 285293.
    7. 7)
      • 7. Hashim, M., Ping, H., Ramachandaramurthy, V.: ‘Impedance-based fault location techniques for transmission lines’. Proc. IEEE Region TENCON, Singapore, November 2009, pp. 16.
    8. 8)
      • 8. Gale, P., Crossley, P., Xu, B., et al: ‘Fault location based on traveling waves’. Proc. 5th Int. Conf. Developments Power System Protection, York, UK, April 1993, pp. 5459.
    9. 9)
      • 9. Thomas, D., Carvalho, R., Pereir, E.: ‘Fault location in distribution systems based on traveling waves’. Proc. IEEE Power Tech Conf., Bologna, Italy, June 2003, pp. 468472.
    10. 10)
      • 10. Kezunovic, M., Mrkic, J., Perunicic, B.: ‘An accurate fault location algorithm using synchronised sampling’, Electr. Power Syst. Res., 1994, 29, (3), pp. 657667.
    11. 11)
      • 11. Sauhats, A., Danilova, M..: ‘Fault location algorithms for super high voltage power transmission lines’. Proc. IEEE Power Tech Conf., Bologna, Italy, June 2003, pp. 16.
    12. 12)
      • 12. Ngu, E., Ramar, K.: ‘A combined impedance and traveling wave based fault location method for multi-terminal transmission lines’, Int. J. Electr. Power Energy Syst., 2011, 33, (10), pp. 17671775.
    13. 13)
      • 13. Huang, Q., Zhen, W., Pong, P.: ‘A novel approach for fault location of overhead transmission lines with noncontact magnetic-field measurement’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 11861195.
    14. 14)
      • 14. Zhang, Z., Di Rienco, L.: ‘Optimization of magnetic sensor arrays for current measurement based on swarm intelligence and D-optimality’, Int. J. Comput. Math. Elect. Electron. Eng., 2009, 28, (5), pp. 11791190.
    15. 15)
      • 15. Antona, G., Di Rienco, L., Ottoboni, R., et al: ‘Processing magnetic sensor array data for AC current measurement in multiconductor systems’, IEEE Trans. Instrum. Meas., 2001, 50, (5), pp. 12891295.
    16. 16)
      • 16. Kezunovic, M.: ‘Smart fault location for smart grids’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 1122.
    17. 17)
      • 17. Chen, K., Huang, C., He, J.: ‘Fault detection, classification and location for transmission lines and distribution systems: a review on the methods’, High Volt., 2016, 1, (1), pp. 2533.
    18. 18)
      • 18. Li, Y., Meng, X., Song, X.: ‘Application of signal processing and analysis in detecting single line-to-ground (SLG) fault location in high-impedance grounded distribution network’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 382389.
    19. 19)
      • 19. Shaik, A.G., Pulipaka, R.R.V.: ‘A new wavelet based fault detection, classification and location in transmission lines’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 3540.
    20. 20)
      • 20. Han, J., Kim, W.-K., Lee, J.-W., et al: ‘Fault type classification in transmission line using STFT’. Proc. 11th Int. Conf. Developments in Power Systems Protection 2012, Birmingham, UK, April 2012, pp. 15.
    21. 21)
      • 21. Ananthan, S.N., Padmanabhan, R., Meyur, R., et al: ‘Real-time fault analysis of transmission lines using wavelet multi-resolution analysis based frequency-domain approach’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 693703.
    22. 22)
      • 22. Silva, K., Souza, B., Brito, N.: ‘Fault detection and classification in transmission lines based on wavelet transform and ANN’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 20582063.
    23. 23)
      • 23. Martinez, D.C., Rodriguez, M.V., Ramirez, C.A.P., et al: ‘Novel down-sampling empirical mode decomposition approach for power quality analysis’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 23692378.
    24. 24)
      • 24. Alves Da Silva, A., Lima, A., Souza, S.: ‘Fault location on transmission lines using complex-domain neural networks’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 720727.
    25. 25)
      • 25. Perera, N., Rajapakse, A.D.: ‘Recognition of fault transients using a probabilistic neural-network classifier’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 410419.
    26. 26)
      • 26. Hooshmand, R., Enshaee, A.: ‘Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm’, Electr. Power Syst. Res., 2010, 80, (12), pp. 15521561.
    27. 27)
      • 27. Thukaram, D., Khincha, H.P., Khandelwal, S.: ‘Estimation of switching transient peak overvoltages during transmission line energization using artificial neural network’, Electr. Power Syst. Res., 2006, 76, (4), pp. 259269.
    28. 28)
      • 28. Chis, V., Velicescu, C.: ‘Modeling transmission lines-energization with PSCAD/EMTDC’. Proc. 6th Int. Symp. Applied Computational Intelligence and Informatics 2011, Timisoara, Romania, May 2011, pp. 155158.
    29. 29)
      • 29. Boashash, B.: ‘Time–frequency signal analysis and processing: a comprehensive reference’ (Academic Press, London, 2015).
    30. 30)
      • 30. Bird, J.: ‘Electrical circuit theory and technology’ (Newnes, Oxford, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0103
Loading

Related content

content/journals/10.1049/iet-smt.2017.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address