access icon free Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress

Gas-insulated switchgear (GIS) spacers are made of epoxy resin. However, the surface charge accumulation has been a great concern to the safe operation of GIS, which causes the frequent flashover faults on spacers. In this study, micro-silicon carbide (SiC) particles with non-linear conductivity were added into epoxy matrix and the filler content varied from 0 to 14 vol%. Then, the bulk conductivity and surface potential decay (SPD) tests were conducted. The obtained results showed that the epoxy/SiC composites have obvious non-linear conductivities and the non-linear-conductivity threshold decreases with the increasing filler content. The addition of SiC can effectively resist the rise of surface potential and enhance the surface charge dissipation process. From the trap energy distributions, it can be inferred that the deep traps of ∼0.9 eV should be the intrinsic traps of epoxy and the shallow traps of ∼0.8 eV are considered to be introduced by SiC. Furthermore, the simulation results confirmed that the sharp increase of carrier mobility in non-linear region significantly reduces the remaining time and possibility of a de-trapped charge being recaptured by traps before reaching the grounded electrode. Therefore, the high conductivity in non-linear region contributes a lot to the increase of SPD rate.

Inspec keywords: wide band gap semiconductors; nanocomposites; carrier mobility; surface charging; surface potential; gas insulated switchgear; filled polymers; electrical conductivity; silicon compounds; resins

Other keywords: nonlinear conductivity; epoxy matrix; charge detrapping; bulk conductivity; gas-insulated switchgear; trap energy distributions; carrier mobility; charge trapping; microsilicon carbide particles; surface charge dissipation process; surface potential decay; epoxy-silicon carbide composites; DC stress

Subjects: Electrical conductivity of composite materials; Electrical properties of thin films, low-dimensional and nanoscale structures; Electrostatics; Low-field transport and mobility; piezoresistance (semiconductors/insulators); Switchgear

References

    1. 1)
      • 7. Donnelly, K.P., Varlow, B.R.: ‘Nonlinear dc and ac conductivity in electrically insulating composites’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (4), pp. 610614.
    2. 2)
      • 2. Okabe, S., Ueta, G., Nojima, K.: ‘Resistance characteristics and electrification characteristics of GIS epoxy insulators under DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (21), pp. 12601267.
    3. 3)
      • 10. Wang, F., Zhang, P., Gao, M., et al: ‘Research on the non-linear conductivity characteristics of nano-SiC/silicone rubber composites’. IEEE Conf. Electrical Insulation Dielectric Phenomena (CEIDP), 2013, pp. 435538.
    4. 4)
      • 17. Zhi, Y., Chen, A.: ‘Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7)Fe2.1O4’, J. Appl. Phys., 2002, 91, (2), pp. 794797.
    5. 5)
      • 9. Wang, F., Zhang, P.: ‘Improvement in the electric field distribution of silicone rubber composite insulators by non-linear fillers’, Int. Forum Strateg. Technol., 2013, 1, pp. 217221.
    6. 6)
      • 6. Auckland, D.W., Brown, N.E., Varlow, B.R.: ‘Non-linear conductivity in electrical insulation’. IEEE Conf. Electrical Insulation Dielectric Phenomena (CEIDP), 1997, pp. 186189.
    7. 7)
      • 14. Ziari, Z., Sahli, S., Bellel, A.: ‘Mobility dependence on electric field in low density polyethylene (LDPE)’, 1957.
    8. 8)
      • 3. Tenbohlem, S., Schrocher, G.: ‘The influence of surface charge on lightning impulse breakdown of spacers in SF6’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, pp. 241246.
    9. 9)
      • 16. Tsangaris, G.M., Psarras, G.C., Kouloumbi, N.: ‘Electric modulus and interfacial polarization in composite polymeric system’, J. Mater. Sci., 1998, 33, pp. 20272037.
    10. 10)
      • 15. Chen, G.: ‘A new model for surface potential decay of corona-charged polymers’, J. Appl. Phys., 2010, 43, (5), pp. 5540555411.
    11. 11)
      • 21. Min, D., Li, S.: ‘Simulation on the influence of bipolar charge injection and trapping on surface potential decay of polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 16271636.
    12. 12)
      • 1. Atkinson, G.L., Thomas, W.R.: ‘An epoxy-paper insulation system for high-voltage applications’, IEEE Trans. Dielectr. Electr. Insul., 1967, 2, (1), pp. 1824.
    13. 13)
      • 19. Watson, P.K.: ‘The thermalization and trapping of electrons in polystyrene’, IEEE Trans. Electr. Insul., 1987, 22, (2), pp. 129132.
    14. 14)
      • 11. Simmons, J.G., Tam, M.C.: ‘Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions’, Phys. Rev. B, 1973, 7, (8), pp. 37063713.
    15. 15)
      • 5. Robertson, J., Varlow, B.R.: ‘The AC non-linear permittivity characteristics of barium titanate filled acrylic resin’. IEEE Int. Conf. Properties Applications Dielectric Materials (ICPADM), 2003, pp. 761764.
    16. 16)
      • 8. Strumpler, R., Rhyner, J., Greuter, F., et al: ‘Nonlinear dielectric composites’, Smart Mater. Struct., 1995, 4, pp. 215222.
    17. 17)
      • 22. Toomer, R., Lewis, T.J.: ‘Charge trapping in corona-charge polyethylene films’, J. Phys. D., Appl. Phys., 2000, 13, (7), pp. 13431356.
    18. 18)
      • 13. Eda, K.: ‘Conduction mechanism of non-ohmic zinc oxide ceramics’, J. Appl. Phys., 1978, 45, (5), pp. 29642972.
    19. 19)
      • 20. Roy, S.L., Segur, P., Teyssedre, G., et al: ‘Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction’, J. Phys. D., Appl. Phys., 2004, 37, (2), pp. 298305.
    20. 20)
      • 12. Wang, X., Nelson, J.K., Schadler, L.S., et al: ‘Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite’, IEEE Trans. Dielectr. Electr. Insul., 2011, 17, (6), pp. 16871696.
    21. 21)
      • 18. Zhang, L., Dai, T., Manaka, T., et al: ‘Bulk-trap modulated Maxwell–Wagner type interfacial carrier relaxation process in a fullerene/polyimide double-layer device investigated by time-resolved second harmonic generation’, J. Appl. Phys., 2011, 110, (3), pp. 033715033715–8.
    22. 22)
      • 4. Zha, J.W., Dang, Z.M., Zhao, K., et al: ‘Prominent nonlinear electrical conduction characteristic in T-ZnOw/PTFE composites with low threshold field’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (2), pp. 567573.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0528
Loading

Related content

content/journals/10.1049/iet-smt.2016.0528
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading