access icon free Angle estimation of a single-axis rotation: a practical inertial-measurement-unit-based method

A practical inertial-measurement-unit-based method is proposed to measure the angle of a single-axis rotation, where the axis rotation is invisible or inaccessible. The proposed method utilises the angular velocities of an inertial-measurement unit (IMU) to compute the orientation of the rotating axis. An equation with respect to the unknown rotation angle is first developed due to that the attitude angles of IMU vary as the measured target rotates. An interpolation algorithm is proposed to solve the equation, and simulations are performed. Finally, with a turntable and an IMU, comparative experiments are conducted to validate the proposed method. Results demonstrate the robustness to initial noise and the effectiveness under different situations.The proposed method is practical because of its simple structure, flexible installation and applicability in complex environments. Another more contributions of this study are a feasible approach to measure the orientation of the rotating axis. This method solves the problem of complex and difficult installation of angle measuring equipment in specific environments. It is simple and suited for use in the real-time calculation of angular displacement. It can be used to measure the rotation angle of rotating motors or the rotating axis of some equipment.

Inspec keywords: rotation measurement; units (measurement); interpolation; displacement measurement; angular measurement

Other keywords: target rotation measurement; inertial-measurement-unit-based method; unknown rotation angle measurement; interpolation algorithm; IMU; rotating motor; complex environment; single-axis rotation measurement; angular displacement calculation; angle estimation

Subjects: Velocity, acceleration and rotation measurement; Interpolation and function approximation (numerical analysis); Velocity, acceleration and rotation measurement; Spatial variables measurement; Spatial variables measurement; Numerical approximation and analysis

References

    1. 1)
      • 16. Diebel, J.: ‘Representing attitude: Euler angles, unit quaternions, and rotation vectors’, Matrix, 2006, 58, (15–16), pp. 1011.
    2. 2)
      • 15. Perumal, L.: ‘Representing rotation in Simulink using quaternion’, Appl. Math., 2014, 8, (1L), pp. 267272.
    3. 3)
      • 22. Stoer, J., Bulirsch, R.: ‘Introduction to numerical analysis’ (Springer Science & Business Media, 1980, 3nd edn. 2013), pp. 37140.
    4. 4)
      • 14. Brannon, R.M.: ‘Rotation: a review of useful theorems involving proper orthogonal matrices referenced to three dimensional physical space’. Available athttp://www.mech.utah.edu/brannon/public/rotation.pdf, accessed 16 October 2016, pp. 1940.
    5. 5)
      • 8. Dong, H.X., Fu, Q., Zhao, X., et al: ‘A practical rotation angle measurement method by monocular vision’, Appl. Opt., 2015, 54, (3), pp. 425435.
    6. 6)
      • 9. Khoroshun, A.N., Artsishevskii, D.N.: ‘Determining small angles of beam splitter rotation in optical vortex shearing interferometer’, Tech. Phys. Lett., 2010, 36, (4), pp. 382385.
    7. 7)
      • 28. Fu, M., Deng, Z., Zhang, J.: ‘Kalman filter theory and application in navigation system’ (Beijing: Science Press, 2003).
    8. 8)
      • 26. Wang, B., Ren, Q., Deng, Z.H., et al: ‘A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 23532362.
    9. 9)
      • 7. Popiolek-Masajada, A., Borwiska, M., Fraczek, W.: ‘Testing a new method for small-angle rotation measurements with the optical vortex interferometer’, Meas. Sci. Technol., 2006, 17, (4), pp. 653657.
    10. 10)
      • 29. You, W., Lrene, J., Andy, R., et al: ‘Pixhawk users manual’. Available at http://www.geeetech.com/Documents/Pixhawk%20%20user%20maual%20.pdf, accessed 15 October 2016, pp. 1723.
    11. 11)
      • 6. Boboc, A., Zabeo, L., Murari, A., et al: ‘Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET’, Rev. Sci. Instrum., 2006, 77, (10), pp. 10F324110F3244.
    12. 12)
      • 24. Alexander, J.R., Beck, J., Chen, W.W.L.: ‘Geometric discrepancy theory and uniform distribution’, in Toth, C.D., O'Rourke, J., Goodman, J.E. (Eds.): ‘Handbook of discrete and computational geometry’ (CRC Press, 2004), pp. 279305.
    13. 13)
      • 1. Wikipedia.: ‘Inertial measurement unit’. Available athttps://en.wikipedia.org/wiki/Inertial_measurement_unit, accessed 13 March 2017.
    14. 14)
      • 4. Olivares, A., Górriz, J.M., Ramírez, J., et al: ‘Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering’, Meas. Sci. Technol., 2011, 22, (2), pp. 025801025815.
    15. 15)
      • 27. Deng, Z.H., Sun, M., Wang, B., et al: ‘Analysis and calibration of the non-orthogonal angle in duel-axis rotational INS’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 47624771.
    16. 16)
      • 19. Gavin, H.: ‘The Levenberg–Marquardt method for nonlinear least squares curve-fitting problems’. Available athttp://people.duke.edu/hpgavin/ce281/lm.pdf, accessed 16 October 2016, pp. 115.
    17. 17)
      • 10. Li, W.M., Jin, J., Li, X., et al: ‘Method of rotation angle measurement in machine vision based on calibration pattern with spot array’, Appl. Opt., 2010, 49, (6), pp. 10011006.
    18. 18)
      • 17. Tomazic, S., Stancin, S.: ‘Simultaneous orthogonal rotation angle’, Electrotech. Rev., 2011, 78, pp. 711.
    19. 19)
      • 12. Stancin, S., Tomazic, S.: ‘Angle estimation of simultaneous orthogonal rotations from 3D gyroscope measurements’, Sensors, 2011, 11, (9), pp. 85368549.
    20. 20)
      • 13. Kuipers, J.B.: ‘Quaternions and rotation sequences’, in Mladenov, I.M., Naber, G.L. (Eds.): ‘Geometry, integrability and quantization’ (Princeton University Press, 1999), pp. 127143.
    21. 21)
      • 21. Pattis, R.E.: ‘Textbook errors in binary searching’, ACM SIGCSE Bull., 1988, 20, (1), pp. 190194.
    22. 22)
      • 18. Antoniou, A., Lu, W.S.: ‘One-dimensional optimization’, inPractical optimization: algorithms and engineering applications’ (Springer Science & Business Media, 2007), pp. 81117.
    23. 23)
      • 25. Ren, Q., Wang, B., Deng, Z., et al: ‘A multi-position self-calibration method for dual-axis rotational inertial navigation system’, Sens. Actuat. A Phys., 2014, 219, pp. 2431.
    24. 24)
      • 20. Barringer, R., Akenine-Möller, T.: ‘Dynamic stackless binary tree traversal’, J. Comput. Graph. Tech., 2013, 2, (1), pp. 3849.
    25. 25)
      • 11. Jing, J., Zhao, L.N., Xu, S.L.: ‘High-precision rotation angle measurement method based on monocular vision’, JOSA A, 2014, 31, (7), pp. 14011407.
    26. 26)
      • 23. Meier, L., Tanskanen, P., Heng, L., et al: ‘Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision’, Auton. Robots, 2012, 33, (1–2), pp. 2139.
    27. 27)
      • 5. Luo, J., Wang, Z., Shen, C., et al: ‘Rotating shaft tilt angle measurement using an inclinometer’, Meas. Sci. Rev., 2015, 15, (5), pp. 236243.
    28. 28)
      • 2. Geiger, W., Bartholomeyczik, J., Breng, U., et al: ‘MEMS IMU for AHRS applications’. Proc. Conf. IEEE/ION Position, Location and Navigation Symp., Monterey, CA, USA, May 2008, pp. 225231.
    29. 29)
      • 3. Seel, T., Raisch, J., Schauer, T.: ‘IMU-based joint angle measurement for gait analysis’, Sensors, 2014, 14, (4), pp. 68916909.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0459
Loading

Related content

content/journals/10.1049/iet-smt.2016.0459
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading