http://iet.metastore.ingenta.com
1887

Angle estimation of a single-axis rotation: a practical inertial-measurement-unit-based method

Angle estimation of a single-axis rotation: a practical inertial-measurement-unit-based method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A practical inertial-measurement-unit-based method is proposed to measure the angle of a single-axis rotation, where the axis rotation is invisible or inaccessible. The proposed method utilises the angular velocities of an inertial-measurement unit (IMU) to compute the orientation of the rotating axis. An equation with respect to the unknown rotation angle is first developed due to that the attitude angles of IMU vary as the measured target rotates. An interpolation algorithm is proposed to solve the equation, and simulations are performed. Finally, with a turntable and an IMU, comparative experiments are conducted to validate the proposed method. Results demonstrate the robustness to initial noise and the effectiveness under different situations.The proposed method is practical because of its simple structure, flexible installation and applicability in complex environments. Another more contributions of this study are a feasible approach to measure the orientation of the rotating axis. This method solves the problem of complex and difficult installation of angle measuring equipment in specific environments. It is simple and suited for use in the real-time calculation of angular displacement. It can be used to measure the rotation angle of rotating motors or the rotating axis of some equipment.

References

    1. 1)
      • 1. Wikipedia.: ‘Inertial measurement unit’. Available athttps://en.wikipedia.org/wiki/Inertial_measurement_unit, accessed 13 March 2017.
    2. 2)
      • 2. Geiger, W., Bartholomeyczik, J., Breng, U., et al: ‘MEMS IMU for AHRS applications’. Proc. Conf. IEEE/ION Position, Location and Navigation Symp., Monterey, CA, USA, May 2008, pp. 225231.
    3. 3)
      • 3. Seel, T., Raisch, J., Schauer, T.: ‘IMU-based joint angle measurement for gait analysis’, Sensors, 2014, 14, (4), pp. 68916909.
    4. 4)
      • 4. Olivares, A., Górriz, J.M., Ramírez, J., et al: ‘Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering’, Meas. Sci. Technol., 2011, 22, (2), pp. 025801025815.
    5. 5)
      • 5. Luo, J., Wang, Z., Shen, C., et al: ‘Rotating shaft tilt angle measurement using an inclinometer’, Meas. Sci. Rev., 2015, 15, (5), pp. 236243.
    6. 6)
      • 6. Boboc, A., Zabeo, L., Murari, A., et al: ‘Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET’, Rev. Sci. Instrum., 2006, 77, (10), pp. 10F324110F3244.
    7. 7)
      • 7. Popiolek-Masajada, A., Borwiska, M., Fraczek, W.: ‘Testing a new method for small-angle rotation measurements with the optical vortex interferometer’, Meas. Sci. Technol., 2006, 17, (4), pp. 653657.
    8. 8)
      • 8. Dong, H.X., Fu, Q., Zhao, X., et al: ‘A practical rotation angle measurement method by monocular vision’, Appl. Opt., 2015, 54, (3), pp. 425435.
    9. 9)
      • 9. Khoroshun, A.N., Artsishevskii, D.N.: ‘Determining small angles of beam splitter rotation in optical vortex shearing interferometer’, Tech. Phys. Lett., 2010, 36, (4), pp. 382385.
    10. 10)
      • 10. Li, W.M., Jin, J., Li, X., et al: ‘Method of rotation angle measurement in machine vision based on calibration pattern with spot array’, Appl. Opt., 2010, 49, (6), pp. 10011006.
    11. 11)
      • 11. Jing, J., Zhao, L.N., Xu, S.L.: ‘High-precision rotation angle measurement method based on monocular vision’, JOSA A, 2014, 31, (7), pp. 14011407.
    12. 12)
      • 12. Stancin, S., Tomazic, S.: ‘Angle estimation of simultaneous orthogonal rotations from 3D gyroscope measurements’, Sensors, 2011, 11, (9), pp. 85368549.
    13. 13)
      • 13. Kuipers, J.B.: ‘Quaternions and rotation sequences’, in Mladenov, I.M., Naber, G.L. (Eds.): ‘Geometry, integrability and quantization’ (Princeton University Press, 1999), pp. 127143.
    14. 14)
      • 14. Brannon, R.M.: ‘Rotation: a review of useful theorems involving proper orthogonal matrices referenced to three dimensional physical space’. Available athttp://www.mech.utah.edu/brannon/public/rotation.pdf, accessed 16 October 2016, pp. 1940.
    15. 15)
      • 15. Perumal, L.: ‘Representing rotation in Simulink using quaternion’, Appl. Math., 2014, 8, (1L), pp. 267272.
    16. 16)
      • 16. Diebel, J.: ‘Representing attitude: Euler angles, unit quaternions, and rotation vectors’, Matrix, 2006, 58, (15–16), pp. 1011.
    17. 17)
      • 17. Tomazic, S., Stancin, S.: ‘Simultaneous orthogonal rotation angle’, Electrotech. Rev., 2011, 78, pp. 711.
    18. 18)
      • 18. Antoniou, A., Lu, W.S.: ‘One-dimensional optimization’, inPractical optimization: algorithms and engineering applications’ (Springer Science & Business Media, 2007), pp. 81117.
    19. 19)
      • 19. Gavin, H.: ‘The Levenberg–Marquardt method for nonlinear least squares curve-fitting problems’. Available athttp://people.duke.edu/hpgavin/ce281/lm.pdf, accessed 16 October 2016, pp. 115.
    20. 20)
      • 20. Barringer, R., Akenine-Möller, T.: ‘Dynamic stackless binary tree traversal’, J. Comput. Graph. Tech., 2013, 2, (1), pp. 3849.
    21. 21)
      • 21. Pattis, R.E.: ‘Textbook errors in binary searching’, ACM SIGCSE Bull., 1988, 20, (1), pp. 190194.
    22. 22)
      • 22. Stoer, J., Bulirsch, R.: ‘Introduction to numerical analysis’ (Springer Science & Business Media, 1980, 3nd edn. 2013), pp. 37140.
    23. 23)
      • 23. Meier, L., Tanskanen, P., Heng, L., et al: ‘Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision’, Auton. Robots, 2012, 33, (1–2), pp. 2139.
    24. 24)
      • 24. Alexander, J.R., Beck, J., Chen, W.W.L.: ‘Geometric discrepancy theory and uniform distribution’, in Toth, C.D., O'Rourke, J., Goodman, J.E. (Eds.): ‘Handbook of discrete and computational geometry’ (CRC Press, 2004), pp. 279305.
    25. 25)
      • 25. Ren, Q., Wang, B., Deng, Z., et al: ‘A multi-position self-calibration method for dual-axis rotational inertial navigation system’, Sens. Actuat. A Phys., 2014, 219, pp. 2431.
    26. 26)
      • 26. Wang, B., Ren, Q., Deng, Z.H., et al: ‘A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 23532362.
    27. 27)
      • 27. Deng, Z.H., Sun, M., Wang, B., et al: ‘Analysis and calibration of the non-orthogonal angle in duel-axis rotational INS’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 47624771.
    28. 28)
      • 28. Fu, M., Deng, Z., Zhang, J.: ‘Kalman filter theory and application in navigation system’ (Beijing: Science Press, 2003).
    29. 29)
      • 29. You, W., Lrene, J., Andy, R., et al: ‘Pixhawk users manual’. Available at http://www.geeetech.com/Documents/Pixhawk%20%20user%20maual%20.pdf, accessed 15 October 2016, pp. 1723.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0459
Loading

Related content

content/journals/10.1049/iet-smt.2016.0459
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address