Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Accuracy study for lock-in amplifiers in a scanning near-infrared spectrometer

When a lock-in amplifier was employed in a scanning near-infrared spectrometer, there was the problem of low signal-to-noise ratio (SNR) of spectra. This study investigates the impact of unstable measured signal frequency in the lock-in amplifier. The analysis concludes that when the frequency of the measured signal and reference signal are not equal due to frequency fluctuations, the amplitude detection results are inaccurate and change periodically with the initial phase of the measured signal. According to analysis results, a zero-phase detection method is designed in the spectrometer, where the measured signal phase is judged to guarantee detection starting at the zero-phase position. The experimental results indicate that the average of the SNR of spectra is 2376 using the zero-phase detection method, which is approximately three times that of the original system and coincides with the results of the theoretical calculation (2273) and simulation analysis (2234).

References

    1. 1)
      • 22. Restelli, A., Abbiati, R., Geraci, A.: ‘Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications’, Rev. Sci. Instrum., 2005, 76, (9), p. 093112.
    2. 2)
      • 26. Lu, W.Z., Yuan, H.F., Chu, X.L.: ‘Near infrared instrument’ (Chemical Industry Press, 2010).
    3. 3)
      • 14. D'amico, A., De Marcellis, A., Di Carlo, C., et al: ‘Low-voltage low-power integrated analog lock-in amplifier for gas sensor applications’, Sens. Actuators B, Chem., 2010, 144, (2), pp. 400406.
    4. 4)
      • 5. Da Silva, V.H., Reboucas, M.V., Salles, A.R., et al: ‘Determination of naphtha composition by near infrared spectroscopy and multivariate regression to control steam cracker processes’, Fuel Process. Technol., 2015, 131, pp. 230237.
    5. 5)
      • 27. Teng, F.: ‘Design of NIR-spectrometer debugging platform for PISA-S’. MS thesis, Jilin University, 2013.
    6. 6)
      • 15. Maya-Hernandez, P.M., Sanz-Pascual, M.T., Calvo, B.: ‘CMOS low-power lock-in amplifiers with signal rectification in current domain’, IEEE Trans. Instrum. Meas., 2015, 64, (7), pp. 18581867.
    7. 7)
      • 8. Alonso, R., Villuendas, F., Borja, J., et al: ‘Low-cost, digital lock-in module with external reference for coating glass transmission/reflection spectrophotometer’, Meas. Sci. Technol., 2003, 14, (5), pp. 551557.
    8. 8)
      • 13. De Marcellis, A., Ferri, G., D'Amico, A., et al: ‘A fully-analog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations’, IEEE Sens. J., 2012, 12, (5), pp. 13771383.
    9. 9)
      • 1. Marques, E.J.N., de Freitas, S.T., Pimentel, M.F., et al: ‘Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer’, Food Chem., 2016, 197, pp. 12071214.
    10. 10)
      • 9. Wang, J.R., Wang, Z.H., Ji, X.F., et al: ‘A simplified digital lock-in amplifier for the scanning grating spectrometer’, Rev. Sci. Instrum., 2017, 88, (2), p. 023101.
    11. 11)
      • 23. Lascos, S.J., Cassidy, D.T.: ‘Multichannel digital phase sensitive detection using a field programmable gate array development platform’, Rev. Sci. Instrum., 2008, 79, (7), p. 074702.
    12. 12)
      • 4. Wang, P., Yu, Z.: ‘Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: a review’, J. Pharm. Anal., 2015, 5, (5), pp. 277284.
    13. 13)
      • 12. De Marcellis, A., Ferri, G., D'Amico, A.: ‘One-decade frequency range, in-phase auto-aligned 1.8 V 2 mW fully-analog CMOS integrated lock-in amplifier for small/noisy signal detection’, IEEE Sens. J., 2016, 16, (14), pp. 56905701.
    14. 14)
      • 19. Sonnaillon, M.O., Bonetto, F.J.: ‘A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously’, Rev. Sci. Instrum., 2005, 76, (2), p. 024703.
    15. 15)
      • 7. Pease, J.: ‘Lock-in amplifiers and choppers enhance optical measurements’, Laser Focus World, 1994, 30, (5), pp. 231234.
    16. 16)
      • 2. Mizushima, M., Kawamura, T., Takahashi, K., et al: ‘In situ near-infrared spectroscopic studies of the structural changes in polyethylene during tensile deformation’, Polym. Test., 2014, 38, pp. 8186.
    17. 17)
      • 20. Vandenbussche, J.J., Lee, P., Peuteman, J.: ‘On the accuracy of digital phase sensitive detectors implemented in FPGA technology’, IEEE Trans. Instrum. Meas., 2014, 63, (8), pp. 19261936.
    18. 18)
      • 11. Bhagyajyoti, J.I., Sudheer, L.S., Bhaskar, P., et al: ‘Review on lock-in amplifier’, Int. J. Eng. Res. Technol., 2012, 1, (5), pp. 4045.
    19. 19)
      • 6. Wang, Z.H., Lin, J., Wu, Z.Y., et al: ‘Development of the portable mineral NIR spectrometer’, Chin. J. Sci. Instrum., 2005, 26, (11), pp. 11351138.
    20. 20)
      • 24. Walker, W.D.: ‘Sub-microdegree phase measurement technique using lock-in amplifiers’. IEEE Int. Frequency Control Symp., Honolulu, Hl, May 2008, pp. 825828.
    21. 21)
      • 10. Gao, J.Z.: ‘Detection of weak signals’ (Tsinghua University Press, 2011, 2nd edn.).
    22. 22)
      • 18. Zhang, S.Z., Li, G., Lin, L., et al: ‘Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection’, Rev. Sci. Instrum., 2016, 87, (8), p. 085102.
    23. 23)
      • 3. Dos Santos, C.A.T., Lopo, M., Pascoa, R.N.M.J., et al: ‘A review on the applications of portable near-infrared spectrometers in the agro-food industry’, Appl. Spectrosc., 2013, 67, (11), pp. 12151233.
    24. 24)
      • 21. Sonnaillon, M.O., Bonetto, F.J.: ‘Lock-in amplifier error prediction and correction in frequency sweep measurements’, Rev. Sci. Instrum., 2007, 78, (1), p. 014701.
    25. 25)
      • 16. Li, G., Zhang, S.Z., Zhou, M., et al: ‘A method to remove odd harmonic interferences in square wave reference digital lock-in amplifier’, Rev. Sci. Instrum., 2013, 84, (2), p. 025115.
    26. 26)
      • 17. Jiang, G.L., Yang, H., Li, R., et al: ‘A new algorithm for a high-modulation frequency and high-speed digital lock-in amplifier’, Meas. Sci. Technol., 2016, 27, (1), p. 015701.
    27. 27)
      • 25. Wang, J.R., Liu, J., Liu, G.D., et al: ‘Near-infrared spectroscopy using digital phase-sensitive detection’, Instrum. Sci. Technol., 2016, 44, (20), pp. 199209.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0440
Loading

Related content

content/journals/10.1049/iet-smt.2016.0440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address