access icon free Loran phase code revisited for continuous wave interference cancellation

A new phase coding is proposed to eliminate the continuous wave interference (CWI) in Loran navigation systems. In fact, CWI is one of the most important noise sources that make errors in signal phase tracking. Consequently, undesirable errors are constructed in time of arrival (TOA) measurement and ultimately navigation precision is reduced dramatically. The performance of Loran navigation systems is improved by applying the proposed phase coding and also using the averaging and phase decoding method. Analyses results show that if the interference is synchronous, then the proposed phase coding, called as Bayat-Madani phase code interval, cancels interference effects on TOA measurement completely. This interference cancelation is independent from the received signal signal-to-interference ratio. For near-synchronous and asynchronous CWI, the TOA error originated from interference is improved considerably, in some frequencies about 100 times, compared to the standard Loran. Furthermore, almost all of the sky multi-hops are eliminated as well.

Inspec keywords: decoding; phase coding; radionavigation; synchronisation; time-of-arrival estimation; interference suppression

Other keywords: Loran phase coding; signal-to-interference ratio; near-synchronous CWI; noise source; TOA measurement; Bayat phase code interval; phase decoding method; continuous wave interference cancellation; time of arrival measurement; asynchronous CWI; Loran navigation system; signal phase tracking

Subjects: Electromagnetic compatibility and interference; Radionavigation and direction finding; Codes

References

    1. 1)
      • 31. Bayat, M., Madani, M.H.: ‘Navigation accuracy improvement using a new integrated algorithm of TOA/TDOA in ground-based loran systems’, J. Aeronaut. Eng, 2015, 16, (2), pp. 3760 [in Persian].
    2. 2)
      • 32. Bayat, M., Madani, M.H.: ‘A new algorithm for synchronous continuous wave interference cancellation in loran navigation system’, J. Electron. Cyber Defence, 2016, 4, (1), pp. 1226 [in Persian].
    3. 3)
      • 16. Li, S., Wang, Y., Hua, Y., et al: ‘Loran-C signal fast acquisition method and its performance analysis’, J. Electron. Inf. Technol., 2013, 35, (6), pp. 21752179.
    4. 4)
      • 15. Lei, W., Chen, B.: ‘Low complexity sparse noise reduction method for Loran-C sky wave delay estimation’, IEEE Electron. Lett., 2013, 49, pp. 15721574.
    5. 5)
      • 19. Peter, F., Swaszek, L.: ‘Loran phase codes revisited’. Position, Location and Navigation Symp., 2008, IEEE/ION.
    6. 6)
      • 9. Xi, X., Zhou, L., Zhang, J., et al: ‘Combined IE-FDTD algorithm for long-range Loran-C ground-wave propagation’, IEEE Trans. Antennas Propag., 2012, 60, (4), pp. 38023808.
    7. 7)
      • 12. Lombardi, M.A.: ‘Microsecond accuracy at multiple sites: is it possible without GPS’, IEEE Instrument. Meas. Mag., 2012, 15, (5), pp. 1421.
    8. 8)
      • 11. Lin, H., Zhou, H., Liu, F.: ‘Research on phase coding identification of Loran-C signal under the background of strong CWI’, J. Test Meas. Technol., 2012, 26, (1), pp. 252255.
    9. 9)
      • 28. Last, D., Bian, Y.: ‘Carrier wave interference and Loran-C receiver performance’, IEE Proc.-FRadar Signal Process., 2008, 140, (5), pp. 273283.
    10. 10)
      • 10. Meng, Q., Zhou, X., Liu, H.: ‘Noise suppression technique by adaptive filter in Loran-C receiver’, Modern Electron. Tech., 2007, 24, pp. 59.
    11. 11)
      • 29. Zhou, X., Meng, Q., Liu, H.: ‘Noise suppression technique in Loran-C receivers’, J. Chongqin Univ. Sci. Technol., 2008, 10, (1), pp. 8287.
    12. 12)
      • 8. Zhou, L.L., Xi, X.L., Liu, J.F., et al: ‘LF ground-wave propagation over irregular terrain’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 12541260.
    13. 13)
      • 21. Zhu, Y.-B., Xu, J.-N., Cui, G.-H., Ma, J.-G.: ‘Time-frequency methods for period identification of Loran-C’, J. Electron. Inf. Technol., 2012, 32, (4), pp. 732736.
    14. 14)
      • 20. Remmerswaal, L., Van, W.: ‘Interference and Loran-C: a European problem’. Proc. of the 17th Annual Technical Symp., The Wild Goose Association, October 1988, pp. 2240.
    15. 15)
      • 25. Tong, W.: ‘Study of digital signal process in the front of the Loran-C receiver’ (Xidian University, Xi'an, 2007), pp. 2955.
    16. 16)
      • 5. Helwig, A., Offermans, G., Schue, C.: ‘Low frequency (LF) solutions for alternative positioning, navigation, timing, and data (APNT&D) and associated receiver technology’. Proc. of the ION Int. Technical Meeting (ITM), January 2011.
    17. 17)
      • 27. Li, Sh., Wang, Y., Gao, Y.: ‘A fast anti-interference detection method for Loran-C signal’, J. Xi'an Jiaotong Univ., 2013, 47, (6), pp. 9196.
    18. 18)
      • 30. Last, D., Bian, Y.: ‘High-efficiency Loran-C interference identification by synchronous sampling’, IEEE Trans. Aerosp. Electron. Syst., l997, 33, (1), pp. 134141.
    19. 19)
      • 23. Van Willigen, D.: ‘Hard limiting and sequential detecting loran C sensor’. PhD thesis, Delft University Press, 1985.
    20. 20)
      • 7. Helwig, A., Offermans, G., Stout, C., et al: ‘Next generation low frequency solutions for alternative positioning, navigation, timing, and data (PNT&D) services and associated receiver technology’. Proc. IEEE/ION PLANS, Myrtle Beach, SC, 2012, pp. 12211232.
    21. 21)
      • 17. Zhu, Y., Xu, J., Cui, G., et al: ‘Time-frequency methods for period identification of Loran-C’, J. Electron. Inf. Technol., 2012, 32, (3), pp. 732736.
    22. 22)
      • 3. Bayat, M., Madani, M.H.: ‘A combined improved algorithm to estimating the delay of sky waves in loran c receiver’, J. Electron. Cyber Defence Serial No. 6, 2014, 2, (4), pp. 5481 [in Persian].
    23. 23)
      • 18. Remmerswaal, L.P., Van, W.: ‘Some aspects of interference on Loran-C’, IEE Proc. F Radar Signal Process., 1989, 136, (3), pp. 109117.
    24. 24)
      • 22. Sung, H., Yang, C., Bok, L., et al:‘Accuracy improvement technique for timing application of LORAN-C signal’, IEEE Trans. Instrum. Meas., 2011, 60, (7), pp. 704728.
    25. 25)
      • 24. Beckman, M.: ‘Carrier wave signals interfering with loran C’. PhD thesis, Delft University Press, 1992.
    26. 26)
      • 6. Narins, M.: ‘Alternative positioning, navigation, and timing initiative assumptions and requirements’. FAA APNT Public Meeting, August 2010.
    27. 27)
      • 14. Boyce, C.O.L.Jr.: ‘Atmospheric noise mitigation for loran’. PhD thesis, Stanford University, 2007.
    28. 28)
      • 1. Manish, L.: ‘Characterization of atmospheric noise and precipitation static in the Loran-C Band for aircraft’. Master of Science Thesis, Ohio University, 2004.
    29. 29)
      • 26. Wei, X., Yan, L., Qing, L.: ‘Loran-C synchronous interference suppression using improved adaptive algorithms’, IEEE Trans. Audio Speech Language Process., 2007, 15, (4), pp. 16811695.
    30. 30)
      • 2. Beckmann, M.: ‘Synchronous interference to Loran-C and its influence on cycle identification’. Proc. of the 19th Annual Technical Symp., The Wild Goose Association, October 1990, pp. 105113.
    31. 31)
      • 13. Lili, Z., Zhonglin, M., Yurong, P., et al: ‘Long-range Loran-C” ground-wave propagationprediction based on adaptive moving window finite-difference time-domain method with computeunified device architecture parallel computing techniques’, IET Microw. Antennas Propag., 2015, 9, (5), pp. 413422.
    32. 32)
      • 4. Arthur, H., Gerard, O., Chris, S., et al: ‘Design and performance of a low frequency time and frequency dissemination service’. FAA APNT Public Meeting, August 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0434
Loading

Related content

content/journals/10.1049/iet-smt.2016.0434
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading