access icon free Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester

This study presents the design of a piezoelectric vibration energy generator with power conditioning circuit to power CMOTE wireless sensor node. The test result shows that the energy harvester produces a maximum AC output voltage of 3 V with an optimal resistive load of 200 Ω for 1.5 m/s2 acceleration at the resonant frequency of 275 Hz. The output power from the energy harvester is 65.9 mW. The characterisation analysis of energy harvester without tip mass and effect caused by the addition of mass at different positions have been analysed. Additional mass reduces the device frequency to 21.5 Hz and improves the output voltage up to 3.632 V. A single-stage AC–DC power converter which integrates the rectification and boosting circuit is designed, simulated and implemented in hardware to extract the maximum power from harvester to attain higher efficiency. The designed circuit will operate at a minimum AC voltage of 0.5 V. The minimum output from the harvester is rectified, boosted to 7V DC output and regulated to 3.3 V to power wireless sensor node. The conversion efficiency of the circuit is improved to 70.03% with reduced loss of 19.76 mW by size reduction.

Inspec keywords: piezoelectric transducers; rectification; AC-DC power convertors; wireless sensor networks; energy harvesting

Other keywords: tip mass; voltage 3.3 V; power CMOTE wireless sensor node; frequency 275 Hz; resistance 200 ohm; frequency 21.5 Hz; efficiency 70.03 percent; rectification; voltage 0.5 V; piezoelectric vibration energy generator; boosting circuit; piezoelectric vibration energy harvester; power conditioning circuit; voltage 3 V; power 19.76 mW; PZT-5H-based harvester; voltage 7 V; power 65.9 mW; single-stage AC-DC power converter

Subjects: Piezoelectric devices; Power electronics, supply and supervisory circuits; AC-DC power convertors (rectifiers); Energy harvesting; Sensing devices and transducers; Transducers; Energy harvesting

References

    1. 1)
      • 18. Dwari, S., Dayal, R., Parsa, L., et al: ‘Efficient direct ac-to-dc converters for vibration-based low voltage energy harvesting’. 34th Annual Conf. of IEEE Industrial Electronics, 2008, IECON 2008, November 2008, pp. 23202325.
    2. 2)
      • 14. Szarka, G.D., Stark, B.H., Burrow, S.G.: ‘Review of power conditioning for kinetic energy harvesting systems’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 803815.
    3. 3)
      • 12. Guyomar, D., Lallart, M.: ‘Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation’, Micromachines, 2011, 2, (2), pp. 274294.
    4. 4)
      • 17. Mitcheson, P.D., Green, T.C., Yeatman, E.M.: ‘Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers’, Microsyst. Technol., 2007, 13, (11-12), pp. 16291635.
    5. 5)
      • 8. Kirubaveni, S., Radha, S., Sreeja, B.S., et al: ‘Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester’, Microsyst. Technol., 2015, 21, (10), pp. 21652173.
    6. 6)
      • 21. Yu, H., Zhou, J., Deng, L., et al: ‘A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit’, Sensors, 2014, 14, (2), pp. 33233341.
    7. 7)
      • 3. Cho, J., Anderson, M., Richards, R., et al: ‘Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling’, J. Micromech. Microeng., 2005, 15, pp. 17971803.
    8. 8)
      • 7. Roundy, S., Leland, E.S., Baker, J.: ‘Improving power output for vibration-based energy scavengers’, IEEE Pervasive Comput., 2005, 4, pp. 2836, doi:10.1109/MPRV.2005.14.
    9. 9)
      • 5. Anton, S.R., Sodano, H.A.: ‘A review of power harvesting using piezoelectric materials (2003–2006)’, Smart Mater. Struct., 2007, 16, pp. 121.
    10. 10)
      • 13. Liang, J., Liao, W.-H.: ‘Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems’, IEEE Trans. Ind. Electron., 2012, 59, (4), pp. 19501960.
    11. 11)
      • 9. Cao, X., Chiang, W.-J., King, Y.-C., et al: ‘Electromagnetic energy harvesting circuit with feed forward and feedback DC–DC PWM boost converter for vibration power generator system’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 679685.
    12. 12)
      • 10. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck-boost converter for sensor less power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    13. 13)
      • 20. Cheng, S., Jin, Y., Rao, Y., et al: ‘An active voltage doubling AC/DC converter for low-voltage energy harvesting applications’, IEEE Trans. Power Electron., 2011, 26, (8), pp. 22582265.
    14. 14)
      • 11. Clare, L.R., Burrow, S.G.: ‘Power conditioning for energy harvesting’. Proc. SPIE Active and Passive Smart Structures and Integrated Systems, CA, 2008, pp. 69280A-169280A-13.
    15. 15)
      • 22. Tremblay, O., Dessaint, L.A.: ‘Experimental validation of a battery dynamic model for EV applications’, World Electric Veh. J., 2009, 3, pp. 110.
    16. 16)
      • 15. Peters, H.J., Maurath, D., Manoli, Y.: ‘A sub-500 mV highly efficient active rectifier for energy harvesting applications’, IEEE Trans. Circuits Syst. I Reg. Papers, 2011, 58, (7), pp. 15421550.
    17. 17)
      • 19. Cheng, S., Sathe, R., Natarajan, R.D., et al: ‘A voltage multiplying self-powered AC/DC converter with 0.35-V minimum input voltage for energy harvesting applications’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 25422549.
    18. 18)
      • 16. Nath, A.D., Radhakrishnan, K., Eldhose, K.A.: ‘Low –voltage direct ac-dc boost converter for micro generator based energy harvesting’, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 2013, 2, (3), pp. 10451052.
    19. 19)
      • 24. Rafique, S., Agren, E.S.: ‘Vibration energy harvesting using effective power conditioning circuit’, Int. J. Sci. Technol. Res., 2016, 5, (05), pp. 103109.
    20. 20)
      • 1. Priya, S., Inman, D.J.: ‘Energy harvesting technologies’ (Springer Science, Berlin, Heidelberg, 2010).
    21. 21)
      • 25. Motiur Rahaman, D.M., Islam, M.S., Sampe, J., et al: ‘An architecture of ULP energy harvesting power conditioning circuit using piezoelectric transducer for wireless sensor network’, Asian J. Sci. Res., 2015, 8, (1), pp. 113.
    22. 22)
      • 4. Rashid, M.H.: ‘Power electronics handbook’ (Butterworth-Heinemann, USA, 2007, 2nd edn.), pp. 249260.
    23. 23)
      • 23. Maurath, D., Becker, P.F., Spreemann, D., et al: ‘Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking’, IEEE J. Solid-State Circuits, 2012, 47, (6), pp. 13691380.
    24. 24)
      • 6. Sodano, H., Park, G., Inman, D.J.: ‘A review of power harvesting from vibration using piezoelectric materials’, Shock Vib. Dig., 2004, 36, pp. 197205.
    25. 25)
      • 2. Kazmierski, T.J., Beeby, S.: ‘Energy harvesting systems: principles, modeling and applications’ (Springer Science, Berlin, Heidelberg, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0377
Loading

Related content

content/journals/10.1049/iet-smt.2016.0377
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading