Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester

Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the design of a piezoelectric vibration energy generator with power conditioning circuit to power CMOTE wireless sensor node. The test result shows that the energy harvester produces a maximum AC output voltage of 3 V with an optimal resistive load of 200 Ω for 1.5 m/s2 acceleration at the resonant frequency of 275 Hz. The output power from the energy harvester is 65.9 mW. The characterisation analysis of energy harvester without tip mass and effect caused by the addition of mass at different positions have been analysed. Additional mass reduces the device frequency to 21.5 Hz and improves the output voltage up to 3.632 V. A single-stage AC–DC power converter which integrates the rectification and boosting circuit is designed, simulated and implemented in hardware to extract the maximum power from harvester to attain higher efficiency. The designed circuit will operate at a minimum AC voltage of 0.5 V. The minimum output from the harvester is rectified, boosted to 7V DC output and regulated to 3.3 V to power wireless sensor node. The conversion efficiency of the circuit is improved to 70.03% with reduced loss of 19.76 mW by size reduction.


    1. 1)
      • 1. Priya, S., Inman, D.J.: ‘Energy harvesting technologies’ (Springer Science, Berlin, Heidelberg, 2010).
    2. 2)
      • 2. Kazmierski, T.J., Beeby, S.: ‘Energy harvesting systems: principles, modeling and applications’ (Springer Science, Berlin, Heidelberg, 2011).
    3. 3)
      • 3. Cho, J., Anderson, M., Richards, R., et al: ‘Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling’, J. Micromech. Microeng., 2005, 15, pp. 17971803.
    4. 4)
      • 4. Rashid, M.H.: ‘Power electronics handbook’ (Butterworth-Heinemann, USA, 2007, 2nd edn.), pp. 249260.
    5. 5)
      • 5. Anton, S.R., Sodano, H.A.: ‘A review of power harvesting using piezoelectric materials (2003–2006)’, Smart Mater. Struct., 2007, 16, pp. 121.
    6. 6)
      • 6. Sodano, H., Park, G., Inman, D.J.: ‘A review of power harvesting from vibration using piezoelectric materials’, Shock Vib. Dig., 2004, 36, pp. 197205.
    7. 7)
      • 7. Roundy, S., Leland, E.S., Baker, J.: ‘Improving power output for vibration-based energy scavengers’, IEEE Pervasive Comput., 2005, 4, pp. 2836, doi:10.1109/MPRV.2005.14.
    8. 8)
      • 8. Kirubaveni, S., Radha, S., Sreeja, B.S., et al: ‘Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester’, Microsyst. Technol., 2015, 21, (10), pp. 21652173.
    9. 9)
      • 9. Cao, X., Chiang, W.-J., King, Y.-C., et al: ‘Electromagnetic energy harvesting circuit with feed forward and feedback DC–DC PWM boost converter for vibration power generator system’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 679685.
    10. 10)
      • 10. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck-boost converter for sensor less power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    11. 11)
      • 11. Clare, L.R., Burrow, S.G.: ‘Power conditioning for energy harvesting’. Proc. SPIE Active and Passive Smart Structures and Integrated Systems, CA, 2008, pp. 69280A-169280A-13.
    12. 12)
      • 12. Guyomar, D., Lallart, M.: ‘Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation’, Micromachines, 2011, 2, (2), pp. 274294.
    13. 13)
      • 13. Liang, J., Liao, W.-H.: ‘Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems’, IEEE Trans. Ind. Electron., 2012, 59, (4), pp. 19501960.
    14. 14)
      • 14. Szarka, G.D., Stark, B.H., Burrow, S.G.: ‘Review of power conditioning for kinetic energy harvesting systems’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 803815.
    15. 15)
      • 15. Peters, H.J., Maurath, D., Manoli, Y.: ‘A sub-500 mV highly efficient active rectifier for energy harvesting applications’, IEEE Trans. Circuits Syst. I Reg. Papers, 2011, 58, (7), pp. 15421550.
    16. 16)
      • 16. Nath, A.D., Radhakrishnan, K., Eldhose, K.A.: ‘Low –voltage direct ac-dc boost converter for micro generator based energy harvesting’, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 2013, 2, (3), pp. 10451052.
    17. 17)
      • 17. Mitcheson, P.D., Green, T.C., Yeatman, E.M.: ‘Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers’, Microsyst. Technol., 2007, 13, (11-12), pp. 16291635.
    18. 18)
      • 18. Dwari, S., Dayal, R., Parsa, L., et al: ‘Efficient direct ac-to-dc converters for vibration-based low voltage energy harvesting’. 34th Annual Conf. of IEEE Industrial Electronics, 2008, IECON 2008, November 2008, pp. 23202325.
    19. 19)
      • 19. Cheng, S., Sathe, R., Natarajan, R.D., et al: ‘A voltage multiplying self-powered AC/DC converter with 0.35-V minimum input voltage for energy harvesting applications’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 25422549.
    20. 20)
      • 20. Cheng, S., Jin, Y., Rao, Y., et al: ‘An active voltage doubling AC/DC converter for low-voltage energy harvesting applications’, IEEE Trans. Power Electron., 2011, 26, (8), pp. 22582265.
    21. 21)
      • 21. Yu, H., Zhou, J., Deng, L., et al: ‘A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit’, Sensors, 2014, 14, (2), pp. 33233341.
    22. 22)
      • 22. Tremblay, O., Dessaint, L.A.: ‘Experimental validation of a battery dynamic model for EV applications’, World Electric Veh. J., 2009, 3, pp. 110.
    23. 23)
      • 23. Maurath, D., Becker, P.F., Spreemann, D., et al: ‘Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking’, IEEE J. Solid-State Circuits, 2012, 47, (6), pp. 13691380.
    24. 24)
      • 24. Rafique, S., Agren, E.S.: ‘Vibration energy harvesting using effective power conditioning circuit’, Int. J. Sci. Technol. Res., 2016, 5, (05), pp. 103109.
    25. 25)
      • 25. Motiur Rahaman, D.M., Islam, M.S., Sampe, J., et al: ‘An architecture of ULP energy harvesting power conditioning circuit using piezoelectric transducer for wireless sensor network’, Asian J. Sci. Res., 2015, 8, (1), pp. 113.

Related content

This is a required field
Please enter a valid email address