http://iet.metastore.ingenta.com
1887

Low-cost automotive wireless instrumentation: is it possible?

Low-cost automotive wireless instrumentation: is it possible?

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Automotive instrumentation is an important process to guarantee quality and safety for the drivers and passengers of vehicles. At the same time, it is a time-consuming task, because engineers must setup the system, which includes the passing of cables through the vehicle and the configuration of equipments. A wireless automotive instrumentation system can certainly help on reducing the instrumentation time and its cost. However, it may incur in errors due to the wireless communication between sensors and the base station. In this study, the authors propose a low-cost wireless monitoring system for automotive instrumentation. They compare the proposed system with two commercial instrumentation equipments in terms of features, cost, and precision for monitoring the engine speed. The results indicate that the proposed wireless monitoring system delivers similar performance, but at a lower cost (up to 1114 times cheaper).

References

    1. 1)
      • 1. Whelan, M.J., Gangone, M.V., Janoyan, K.D.: ‘Highway bridge assessment using an adaptive real-time wireless sensor network’, IEEE Sens. J., 2009, 9, (11), pp. 14051413.
    2. 2)
      • 2. Kim, J., Lynch, J.P.: ‘Experimental analysis of vehicle–bridge interaction using a wireless monitoring system and a two-stage system identification technique’, Mech. Syst. Signal Process., 2012, 28, (Complete), pp. 319.
    3. 3)
      • 3. Uchimura, Y., Nasu, T., Takahashi, M.: ‘IEEE 802.11-based wireless sensor system for vibration measurement’, Adv. Civil Eng., 2010, 2010, (11), p. 9.
    4. 4)
      • 4. Qin, G., Hu, N.: ‘Design of embedded wireless sensor and its soft encapsulation for embedded monitoring of helicopter planetary gear set’, J. Phys., Conf. Ser., 2012, 364, (1), pp. 17.
    5. 5)
      • 5. Goud, V., Padmaja, V.: ‘Vehicle accident automatic detection and remote alarm device’, Int. J. Reconfigurable and Embedded Syst., 2012, 1, (2), pp. 4954.
    6. 6)
      • 6. Öörni, R., Meilikhov, E., Korhonen, T.O.: ‘Interoperability of eCall and ERA-GLONASS in-vehicle emergency call systems’, IET Intell. Transp. Syst., 2015, 9, (6), pp. 582590.
    7. 7)
      • 7. Milanes, V., Perez, J., Onieva, E., et al: ‘Controller for urban intersections based on wireless communications and fuzzy logic’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (1), pp. 243248.
    8. 8)
      • 8. Jung, J., Song, B., Park, S.: ‘The possibility of wireless sensor networks for commercial vehicle load monitoring’, SIGBED Rev., 2011, 8, (4), pp. 3034.
    9. 9)
      • 9. Paul, D., Kim, T.H.: ‘On the feasibility of the optical steering wheel sensor: modeling and control’, Int. J. Autom. Technol., 2011, 12, (5), pp. 661669.
    10. 10)
      • 10. Bajcinca, N.: ‘Wireless cars: a cyber-physical approach to vehicle dynamics control’, Mechatronics, 2015, 30, pp. 261274.
    11. 11)
      • 11. Zhang, N., Chapman, C., Crowther, A.: ‘Development of a novel wireless transducer for measuring the transient torque of an automotive powertrain’ (Springer London, London, 2006), pp. 10561062.
    12. 12)
      • 12. Sinha, J.K., Oyadiji, S.O., Elnady, M.E.: ‘Identification of critical speeds of rotating machines using on-shaft wireless vibration measurement’, J. Phys., Conf. Ser., 2012, 364, pp. 110.
    13. 13)
      • 13. Shi, L., Yuan, Y., Chen, M.Z.Q.: ‘State estimation over a communication network: measurement or estimate communication?’, J. Control Theory Appl., 2010, 8, (1), pp. 2026.
    14. 14)
      • 14. Kadhim, A.H., Babu, T.K.M., O'Kelly, D.: ‘Measurement of steady-state and transient load-angle, angular velocity, and acceleration using an optical encoder’, IEEE Trans. Instrum. Meas., 1992, 41, (4), pp. 486489.
    15. 15)
      • 15. Briggs, T.L., Campbell, J.D., Tassicker, O.J.: ‘An angular-velocity transducer with applications in the measurement and control of rotation’, J. Phys. E, Sci. Instrum., 1971, 4, (3), p. 240.
    16. 16)
      • 16. de Coulon, Y., Bourgeois, C., de Lambilly, H., et al: ‘Microcoil speed and position sensor for automotive applications’, Microsyst. Technol., 1997, 3, (2), pp. 6163.
    17. 17)
      • 17. Ambarish, M.G.: ‘Design and implementation of diaphragm type pressure sensor in a direct tire pressure monitoring system (TPMS) for automotive safety applications’, Int. J. Eng. Sci. Technol., 2011, 3, (8), pp. 65146524.
    18. 18)
      • 18. Hile, J.W., Rabe, P.R.: ‘An on-board sensor for percent alcohol’, IEEE Trans. Veh. Technol., 1978, 27, (3), pp. 142144.
    19. 19)
      • 19. Lindner, M., Tille, T.: ‘Design of highly integrated mechatronic gear selector levers for automotive shift-by-wire systems’, IEEE/ASME Trans. Mechatronics, 2010, 15, (6), pp. 961968.
    20. 20)
      • 20. Nonomura, Y., Fujiyoshi, M., Omura, Y., et al: ‘SOI rate gyro sensor for automotive control’, Sensors and Actuators A: Physical, 2006, 132, (1), pp. 4246.
    21. 21)
      • 21. Jo, K., Lee, M., Sunwoo, M.: ‘Road slope aided vehicle position estimation system based on sensor fusion of GPS and automotive onboard sensors’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (1), pp. 250263.
    22. 22)
      • 22. Walter, M., Eilebrecht, B., Wartzek, T., et al: ‘The smart car seat: personalized monitoring of vital signs in automotive applications’, Pers. Ubiquitous Comput., 2011, 15, (7), pp. 707715.
    23. 23)
      • 23. Ionescu, B., Suse, V., Gadea, C., et al: ‘Using a nir camera for car gesture control’, IEEE Latin Am. Trans., 2014, 12, (3), pp. 520523.
    24. 24)
      • 24. Yamada, K., Nakano, T., Yamamoto, S.: ‘A vision sensor having an expanded dynamic range for autonomous vehicles’, IEEE Trans. Veh. Technol., 1998, 47, (1), pp. 332341.
    25. 25)
      • 25. Civardi, L., Gatti, U., Maloberti, F., et al: ‘An integrated CMOS interface for lambda sensor’, IEEE Trans. Veh. Technol., 1994, 43, (1), pp. 4046.
    26. 26)
      • 26. Tachwali, Y., Refai, H.H.: ‘System prototype for vehicle collision avoidance using wireless sensors embedded at intersections’, J. Franklin Inst., 2009, 346, (5), pp. 488499.
    27. 27)
      • 27. Lin, J.R., Talty, T., Tonguz, O.K.: ‘A blind zone alert system based on intra-vehicular wireless sensor networks’, IEEE Trans. Ind. Inf., 2015, 11, (2), pp. 476484.
    28. 28)
      • 28. Giubbolini, L.: ‘A multistatic microwave radar sensor for short range anticollision warning’, IEEE Trans. Veh. Technol., 2000, 49, (6), pp. 22702275.
    29. 29)
      • 29. Russell, M.E., Crain, A., Curran, A., et al: ‘Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)’, IEEE Trans. Microw. Theory Tech., 1997, 45, (12), pp. 24442453.
    30. 30)
      • 30. Schnabel, R., Hellinger, R., Steinbuch, D., et al: ‘Development of a mid range automotive radar sensor for future driver assistance systems’, Int. J. Microw. Wirel. Technol., 2013, 5, (01), pp. 1523.
    31. 31)
      • 31. Carullo, A., Parvis, M.: ‘An ultrasonic sensor for distance measurement in automotive applications’, IEEE Sens. J., 2001, 1, (2), p. 143.
    32. 32)
      • 32. Matsuzaki, R., Todoroki, A.: ‘Intelligent tires based on measurement of tire deformation’, J. Solid Mech. Mater. Eng., 2008, 2, (2), pp. 269280.
    33. 33)
      • 33. Espadafor, F.J.J., Villanueva, J.A.B., Guerrero, D.P., et al: ‘Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine’, Mech. Syst. Signal Process., 2014, 49, (12), pp. 135153.
    34. 34)
      • 34. Miedl, F., Tille, T.: ‘3-d surface-integrated touch-sensor system for automotive HMI applications’, IEEE/ASME Trans. Mechatronics, 2016, 21, (2), pp. 787794.
    35. 35)
      • 35. Schmid, U., Krötz, G., Schmitt-Landsiedel, D.: ‘A volumetric flow sensor for automotive injection systems’, J. Micromech. Microeng., 2008, 18, (4), p. 045006.
    36. 36)
      • 36. Arif, S.J., Asghar, M.S.J., Sarwar, A.: ‘Measurement of speed and calibration of tachometers using rotating magnetic field’, IEEE Trans. Instrum. Meas., 2014, 63, (4), pp. 848858.
    37. 37)
      • 37. Ovaska, S.J., Valiviita, S.: ‘Angular acceleration measurement: a review’, IEEE Trans. Instrum. Meas., 1998, 47, (5), pp. 12111217.
    38. 38)
      • 38. Wang, P., Davies, P., Starkey, J.M., et al: ‘A torsional vibration measurement system’. 9th IEEE Instrumentation and Measurement Technology Conf., 1992, IMTC ‘92, May 1992, pp. 661666.
    39. 39)
      • 39. Software/Hardware Integration Lab. EPOS website, July 2017. Available at http://epos.lisha.ufsc.br/EPOSMote.
    40. 40)
      • 40. VISPIRON ROTEC GmbH. Rotec from sensors to solutions, July 2017. Available at https://www.vispiron.de/en/testing-equipment/measurement-systems/.
    41. 41)
      • 41. Müller-BBM VibroAkustik Systeme. Acquire dynamic signals, July 2017. Available at http://www.muellerbbm-vas.com/pak-aerospace-testing-solutions/.
    42. 42)
      • 42. Resner, D., Fröhlich, A.A.: ‘Design rationale of a cross-layer, trustful space-time protocol for wireless sensor networks’. 2015 IEEE 20th Conf. on Emerging Technologies Factory Automation (ETFA), September 2015, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0341
Loading

Related content

content/journals/10.1049/iet-smt.2016.0341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address