Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhancement of leak detection in pipelines through time-domain reflectometry/ground penetrating radar measurements

The authors have recently developed a time-domain reflectometry (TDR)-based leak-localisation system which, being based on an electromagnetic technique, overcomes the well-known downsides (sensitivity to environmental noise, to pipe material and geometry etc.) of traditional, electro-acoustic leak-localisation techniques. Starting from the positive results obtained so far, in this work, the authors investigate the possibility of implementing an integrated TDR/ground penetrating radar (TDR/GPR) approach. The TDR would allow the preliminary leak localisation, while the GPR technique would be used to have a countercheck for possible false positives. Also, GPR would allow to assess the quantity of the leaked water (thus scheduling a priority order for repair) and to obtain a three-dimensional view of the subsurface soil around the pipes, so as to assess their health status. In this work, the combined TDR/GPR approach is tested on a pipe section in the presence of two leaks. In addition to this, in this study, also a different configuration of the TDR sensing element (SE) is experimented. As described in what follows, this new SE configuration is expected to expedite considerably the implementation and the use of the TDR-based leak detection system.

References

    1. 1)
      • 10. Cataldo, A., De Benedetto, E., Cannazza, G., et al: ‘Performance comparison of TDR-based systems for permanent and diffused detection of water content and leaks’, Meas. Sci. Technol., 2017, 28, (1), pp. 18.
    2. 2)
      • 26. Freedman, R., Vogiatzis, J.P.: ‘Theory of microwave dielectric constant logging using the electromagnetic wave propagation method’, Geophysics, 1979, 44, (5), pp. 969986.
    3. 3)
      • 15. Nemarich, C.: ‘Time domain reflectometry liquid level sensors’, IEEE Instrum. Meas. Mag., 2001, 4, (4), pp. 4044.
    4. 4)
      • 20. Garambois, S., Snchal, P., Perroud, H.: ‘On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations’, J. Hydrol., 2002, 259, (1-4), pp. 3248.
    5. 5)
      • 24. Sen, P.N.: ‘Resistivity of partially saturated carbonate rocks with microporosity’, Geophysics, 1997, 62, (2), pp. 415425.
    6. 6)
      • 27. Endres, A.L., Knight, R.: ‘A theoretical treatment of the effect of microscopic fluid distribution on the dielectric properties of partially saturated rocks’, Geophys. Prospect., 1992, 40, (3), pp. 307324.
    7. 7)
      • 32. Fruhwirth, R., Schmoller, R., Oberaigner, E.: ‘Some aspects on the estimation of electromagnetic wave velocities’. Proc. of the 6th Int. Conf. on Ground Penetrating Radar (GPR96), Sendai, Japan, 1996, vol. 30, pp. 135138.
    8. 8)
      • 14. Smith, P., Furse, C., Gunther, J.: ‘Analysis of spread spectrum time domain reflectometry for wire fault location’, IEEE Sens. J., 2005, 5, (6), pp. 14691478.
    9. 9)
      • 9. Lai, W., Chang, R., Sham, J., et al: ‘Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR)’, Tunn. Underground Space Technol., 2016, 52, pp. 157167.
    10. 10)
      • 13. Cataldo, A., De Benedetto, E., Cannazza, G., et al: ‘TDR-based monitoring of rising damp through the embedding of wire-like sensing elements in building structures’, Measurement, 2017, 98, pp. 355360.
    11. 11)
      • 21. Leucci, G.: ‘Use of electromagnetic, geoelectric and seismic tomography refraction geophysical methods to estimate the water content in the subsoil’. 18th EEGS Symp. on the Application of Geophysics to Engineering and Environmental Problems, 2005.
    12. 12)
      • 7. Cataldo, A., De Benedetto, E., Cannazza, G., et al: ‘Large-scale implementation of a new TDR-based system for the monitoring of pipe leaks’. XXI IMEKO World Congress ‘Measurement in Research and Industry’, 2015, pp. 11741177.
    13. 13)
      • 31. Annan, A., Cosway, S.: ‘GPR frequency selection’. Fifth Int. Conf. on Ground Penetrating Radar, 1994.
    14. 14)
      • 17. Daniels, D.J.: ‘Ground penetrating radar’ (IET, 2004), vol. 1.
    15. 15)
      • 8. Ocaa-Levario, S., Ayala-Cabrera, D., Izquierdo, J., et al: ‘3d model evolution of a leak based on gpr image interpretation’, Water Sci. Technol., Water Supply, 2015, 15, (6), pp. 13121319.
    16. 16)
      • 19. Bonomo, N., De la Vega, M., Martinelli, P., et al: ‘Pipe-flange detection with GPR’, J. Geophys. Eng., 2010, 8, (1), p. 35.
    17. 17)
      • 28. Topp, G., Davis, J., Annan, A.: ‘Electromagnetic determination of soil water content: Measurements in coaxial transmission lines’, Water Resour. Res., 1980, 16, (3), pp. 574582.
    18. 18)
      • 29. Regalado, C., Muz Carpena, R., Socorro, A., et al: ‘Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils’, Geoderma, 2003, 117, (3-4), pp. 313330.
    19. 19)
      • 16. Cataldo, A., De Benedetto, E.: ‘Broadband reflectometry for diagnostics and monitoring applications’, IEEE Sens. J., 2011, 11, (2), pp. 451459.
    20. 20)
      • 22. Soldovieri, F., Solimene, R.: ‘Ground penetrating radar subsurface imaging of buried objects’ (INTECH Open Access Publisher, 2010).
    21. 21)
      • 5. Cataldo, A., Cannazza, G., De Benedetto, E., et al: ‘A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material’, Meas. Sci. Technol., 2012, 23, (10), pp. 19.
    22. 22)
      • 3. Pearson, D., Trow, S.W.: ‘Calculating economic levels of leakage’. Leakage 2005 - Conf. Proc., 2005.
    23. 23)
      • 4. Hunaidi, O., Bracken, M., Gambino, T., et al: ‘Acoustic methods for locating leaks in municipal water pipe networks’. Int. Conf. on Water Demand Management, 2004, pp. 114.
    24. 24)
      • 25. Shen, L.C., Savre, W.C., Price, J.M., et al: ‘Dielectric properties of reservoir rocks at ultra-high frequencies’, Geophysics, 1985, 50, (4), pp. 692704.
    25. 25)
      • 30. TDR100 instruction manual – revision 2/10, Logan, UT, 2010, http://www.campbellsci.com/documents/manuals/tdr100.pdf.
    26. 26)
      • 12. Wilczek, A., Szypowska, A., Kafarski, M., et al: ‘A time-domain reflectometry method with variable needle pulse width for measuring the dielectric properties of materials’, Sensors, 2016, 16, (2), pp. 112.
    27. 27)
      • 6. Cataldo, A., De Benedetto, E., Cannazza, G., et al: ‘Accuracy improvement in the TDR-based localization of water leaks’, Results Phys., 2016, 6, pp. 594598.
    28. 28)
      • 11. Lin, C.-P., Ngui, Y.J., Lin, C.-H.: ‘A novel TDR signal processing technique for measuring apparent dielectric spectrum’, Meas. Sci. Technol., 2016, 28, (1), p. 015501.
    29. 29)
      • 23. Davis, J.L., Annan, A.P.: ‘Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy’, Geophys. Prospect., 1989, 37, (5), pp. 531551.
    30. 30)
      • 18. Persico, R., Sala, J.: ‘The problem of the investigation domain subdivision in 2d linear inversions for large scale GPR data’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (7), pp. 12151219.
    31. 31)
      • 1. Lambert, A., Hirner, W.: ‘Losses from water supply systems: standard terminology and recommended performance measures’.
    32. 32)
      • 2. Agapiou, A., Alexakis, D., Themistocleous, K., et al: ‘Water leakage detection using remote sensing, field spectroscopy and GIS in semiarid areas of Cyprus’, Urban Water J., 2016, 13, (3), pp. 221231.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0310
Loading

Related content

content/journals/10.1049/iet-smt.2016.0310
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address