Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Complete protection scheme for fault detection, classification and location estimation in HVDC transmission lines using support vector machines

This paper presents a complete protection scheme for detecting, classifying and locating the fault in HVDC transmission lines using support vector machines (SVM). SVM has been used for protective relaying application in HVAC transmission line, however very limited works have been reported for HVDC transmission line. In this work, a ±500 kV HVDC transmission system is developed in PSCAD/EMTDC and the measurement signals obtained are analyzed in MATLAB. The rectifier side AC RMS voltage, DC voltage and current on both the poles are continuously monitored, and given as input to the SVM binary classifier in order to detect the presence of fault in the line. Once a fault is detected, the SVM multi-class classification module predicts the type of fault and the SVM regression algorithm predicts the location of fault. The feature vector used in the classification and location modules is the standard deviation of the signals over half cycle before and after the occurrence of fault. The method proposed is simple as it requires single-end data and a direct standard deviation of one cycle data gives very accurate results. The detection and classification modules are 100% accurate whereas the fault location module has a mean error of 0.03%.

References

    1. 1)
      • 4. Shang, L., Herold, G., Jaeger, J., et al: ‘High-speed fault identification and protection for HVDC line using wavelet technique’. Proc. of 2001 IEEE Porto Power Tech Conf..
    2. 2)
      • 14. Vapnik, V.: ‘Statistical learning theory’ (Wiley, New York, 1998).
    3. 3)
      • 12. Farshad, M., Sadeh, J.: ‘A novel fault location method for HVDC transmission lines based on similarity measure of voltage signals’, IEEE Trans. Power Deliv., 2013, 28, pp. 24832490.
    4. 4)
      • 15. Cortes, C., Vapnik, V.: ‘Support vector networks’, Mach. Learn., 1995, 20, pp. 273297.
    5. 5)
      • 23. Chang, C.-C., Lin, C.-J.: ‘LIBSVM: a library for support vector machines’. Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    6. 6)
      • 2. Nanayakkara, O., Rajapakse, A., Wachal, R.: ‘Travelling-wave-based line fault location in star-connected multi-terminal HVDC systems’, IEEE Trans. Power Deliv., 2012, 27, pp. 22862294.
    7. 7)
      • 8. Yuangsheng, L., Gang, W., Haifeng, L.: ‘Time-domain fault-location method on HVDC transmission lines under unsynchronized two-end measurement and uncertain line parameters’, IEEE Trans. Power Deliv., 2015, 30, pp. 10311038.
    8. 8)
      • 21. Pedregosa, F., Varoquaux, G., Gramfort, A., et al: ‘RBF SVM parameters’. Available at http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.
    9. 9)
      • 20. Cherkassky, V., Ma, Y.: ‘Practical selection of SVM parameters and noise estimation for SVM regression’, Neural Netw., 2004, 17, pp. 113126.
    10. 10)
      • 16. Cristianini, N., Shawe-Taylor, J.: ‘An introduction to support vector machines: and other kernel-based learning methods’ (Cambridge University Press, New York, NY, USA, 2000).
    11. 11)
      • 9. Livani, H., Evrenosoglu, C.Y.: ‘A single-ended fault location method for segmented HVDC transmission line’, Electr. Power Syst. Res., 2014, 107, pp. 190198.
    12. 12)
      • 7. Li, Y., Zhang, S., Li, H., et al: ‘A fault location method based on genetic algorithm for high-voltage direct current transmission line’, Eur. Trans. Electr. Power, 2012, 22, pp. 866878.
    13. 13)
      • 1. Suonan, J., Gao, S., Song, G., et al: ‘A novel fault-location method for HVDC transmission lines’, IEEE Trans. Power Deliv., 2010, 25, pp. 12031209.
    14. 14)
      • 18. Manning, C.D., Raghavan, P., Schütze, H.: ‘Introduction to information retrieval’ (Cambridge University Press, 2008), pp. 327330.
    15. 15)
      • 11. Guoing, S., Xu, C., Xinlei, C., et al: ‘A fault location method for VSC-HVDC transmission lines based on natural frequency of current’, Electr. Power Energy Syst., 2014, 63, pp. 347352.
    16. 16)
      • 10. Gao, S., Chu, X., Shen, Q., et al: ‘A novel whole-line quick-action protection principle for HVDC transmission lines using one-end voltage’, Electr. Power Energy Syst., 2015, 65, pp. 262270.
    17. 17)
      • 17. Haykin, S., Network, N.: ‘A comprehensive foundation’, Neural Netw., 2004, 2, pp. 340348.
    18. 18)
      • 13. Yusuff, A.A., Jimoh, A.A., Munda, J.L.: ‘Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression’, Electr. Power Syst. Res., 2014, 110, pp. 7383.
    19. 19)
      • 5. Chen, P., Xu, B., Li, J.: ‘A travelling wave based fault locating system for HVDC transmission lines’. Proc. of 2006 Int. Conf. on Power System Technology, pp. 14.
    20. 20)
      • 19. Drucker, H., Burges, C.J.C., Kaufman, L., et al: ‘Support vector regression machines’. Advances in Neural Information Processing Systems 9, 1997, pp. 155161.
    21. 21)
      • 3. Dewe, M.B., Sankar, S., Arrillaga, J.: ‘The application of satellite time references to HVDC fault location’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 12951302.
    22. 22)
      • 6. Qui, Y., Li, H., Guo, L., et al: ‘A fault location method for double-circuit HVDC transmission lines on the same tower based on mixed modulus’. Proc. of 2015 IEEE Eindhoven PowerTech Conf., pp. 15.
    23. 23)
      • 22. Naidoo, D., Ijumba, N.M.: ‘HVDC line protection for the proposed future HVDC system’. Proc. of IEEE Int. Conf. on Power System Technology – PowerCon, 2004, vol. 2, pp. 13271332.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0244
Loading

Related content

content/journals/10.1049/iet-smt.2016.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address