access icon free Analysis of ALS and normal EMG signals based on empirical mode decomposition

Electromyogram (EMG) signals contain a lot of information about the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS progressively degenerates the motor neurons in spinal cord. In this study, a new technique for the analysis of normal and ALS EMG signals is proposed. EMG signals are decomposed into narrow band intrinsic mode functions (IMFs) by using empirical mode decomposition (EMD) technique. The area of complex plot, two bandwidths namely amplitude modulation bandwidth (B AM) and frequency modulation bandwidth (B FM), normalised instantaneous frequency (IF n ), spectral momentum of power spectral density (SMPSD) and mean of first derivative of instantaneous frequency (MFDIF) are extracted from analytic IMFs obtained by EMD technique. These six features are used as input in least square support vector machine classifier for the classification of ALS and normal EMG signals. Experimental results and comparative analysis show that classification performance of the proposed method is better than other existing method in the same database.

Inspec keywords: support vector machines; least squares approximations; diseases; electromyography; decomposition; signal classification; medical signal processing; neurophysiology; amplitude modulation; frequency modulation

Other keywords: empirical mode decomposition; IMF; motor neuron degeneration; narrow band intrinsic mode function; amyotrophic lateral sclerosis; frequency modulation bandwidth; electromyogram signal; EMD technique; spinal cord; amplitude modulation bandwidth; ALS analysis; power spectral density; normal EMG signal analysis; neuromuscular disease; least square support vector machine classifier; normalised instantaneous frequency; spectral momentum

Subjects: Bioelectric signals; Biology and medical computing; Interpolation and function approximation (numerical analysis); Electrodiagnostics and other electrical measurement techniques; Knowledge engineering techniques; Signal processing and detection; Modulation and coding methods; Digital signal processing; Numerical approximation and analysis; Interpolation and function approximation (numerical analysis)

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 5. Ko, K.D., El-Ghazawi, T., Kim, D., et al: ‘Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach’. IEEE Conf. Computational Intelligence in Bioinformatics and Computational Biology, May 2014, pp. 16.
    7. 7)
    8. 8)
      • 8. Kasi, P.K., Krivickas, L.S., Melvin, M., et al: ‘Characterization of motor unit behavior in patients with amyotrophic lateral sclerosis’. Fourth Int. IEEE/EMBS Conf. on Neural Engineering, April 2009, pp. 1013.
    9. 9)
      • 34. Vapnik, V.: ‘The nature of statistical learning theory’ (Springer-Verlag, New York, 1995).
    10. 10)
    11. 11)
      • 31. Ohsawa, Y., Tsumoto, S.: ‘Chance discoveries in real world decision making: data- based interaction of human intelligence and artificial intelligence’ (Springer Science & Business Media, 2006), pp. 109110.
    12. 12)
    13. 13)
      • 11. Fattah, S.A., Doulah, A.B.M.S.U., Iqbal, M.A., et al: ‘Identification of motor neuron disease using wavelet domain features extracted from EMG signal’. IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2013, pp. 13081311.
    14. 14)
      • 6. Kasi, P.K., Krivickas, L.S., Meister, M., et al: ‘Motor unit firing characteristics in patients with amyotrophic lateral sclerosis’. Annual Northeast IEEE Conf. on Bioengineering, June 2009, pp. 12.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 24. Nikolic, M.: ‘Detailed analysis of clinical electromyography signals EMG decomposition, findings and firing pattern analysis in controls and patients with myopathy and amytrophic lateral sclerosis’. PhD Thesis, Faculty of Health Science, University of Copenhagen, August 2001.
    20. 20)
    21. 21)
    22. 22)
      • 9. Pal, P., Mohanty, N., Kushwaha, A., et al: ‘Feature extraction for evaluation of Muscular Atrophy’. IEEE Int. Conf. on Computational Intelligence and Computing Research, December 2010, pp. 14.
    23. 23)
    24. 24)
      • 30. Pachori, R.B., Hewson, D., Snoussi, H., et al: ‘Postural time-series analysis using empirical mode decomposition and second-order difference plots’. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, April 2009, pp. 537540.
    25. 25)
    26. 26)
    27. 27)
      • 7. Fattah, S.A., Doulah, A.B.M.S.U., Jumana, M.A., et al: ‘Evaluation of different time and frequency domain features of motor neuron and musculoskeletal diseases’, Int. J. Comput. Appl., 2012, 43, (23), pp. 3440.
    28. 28)
      • 13. Doulah, A.B.M.S., Jumana, M.A.: ‘ALS disease detection in EMG using time-frequency method’. Int. Conf. on Informatics, Electronics & Vision (ICIEV), May 2012, pp. 648651.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 10. Doulah, A.B.M.S.U., Fattah, S.A.: ‘Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential’. Int. Conf. on Electrical Engineering and Information & Communication Technology (ICEEICT), April 2014, pp. 14.
    33. 33)
      • 32. Cohen, L., Lee, C.: ‘Instantaneous bandwidth for signals and spectrogram’, 1990, pp. 24502454.
    34. 34)
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0208
Loading

Related content

content/journals/10.1049/iet-smt.2016.0208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading