Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Attitude determination using a single sensor observation: analytic quaternion solutions and property discussion

This study solves the attitude determination problem based on a single sensor observation. The rotation equation is transformed into a quadratic quaternion form and is then derived to a linear matrix equation with pseudoinverse matrices. The analytic solutions to the equation are computed via elementary row operations. The solutions show that the attitude determination from a single sensor observation has infinite solutions and the general one is governed by two limiting quaternions. Accordingly, the variance analysis is given in view of probabilistic characters. The authors explore the experimental results via the accelerometer attitude determination system. The properties of the two limiting quaternions are investigated in the experiment. The results show that the gravity-determination abilities of the two limiting quaternions are quite different. Using the rotation vector and eigenvalue decomposition of the attitude matrix, the authors prove that one limiting quaternion is better than another one geometrically. The singularity analysis is also performed revealing the non-existence of singularities for limiting quaternions. The above findings are novel, which are quite different from the conclusions made in a previously published study.

References

    1. 1)
      • 29. Markley, F.L.: ‘Fast quaternion attitude estimation from two vector measurements’, J. Guid. Control Dyn., 2002, 25, (2), pp. 411414.
    2. 2)
      • 27. Groves, P.D.: ‘Principles of gnss, inertial, and multisensor integrated navigation systems (second edition)’, 2013.
    3. 3)
      • 20. Wu, J., Zhou, Z., Chen, J., et al: ‘Fast complementary filter for attitude estimation using low-cost MARG sensors’, IEEE Sens. J., 2016, 16, (18), pp. 69977007.
    4. 4)
      • 26. Diebel, J.: ‘Representing attitude: Euler angles, unit quaternions, and rotation vectors’, Matrix, 2006, 58, pp. 135.
    5. 5)
      • 4. Suh, Y.S.: ‘A smoother for attitude and position estimation using inertial sensors with zero velocity intervals’, IEEE Sens. J., 2012, 12, (5), pp. 12551262.
    6. 6)
      • 23. Pittelkau, M.E.: ‘Rotation vector in attitude estimation’, J. Guid. Control Dyn., 2003, 26, (6), pp. 855860.
    7. 7)
      • 18. Yang, Y.: ‘Spacecraft attitude determination and control: quaternion based method’, Annu. Rev. Control, 2012, 36, (2), pp. 198219.
    8. 8)
      • 28. Marantos, P., Koveos, Y., Kyriakopoulos, K.J.: ‘UAV state estimation using adaptive complementary filters’, IEEE Trans. Control Syst. Technol., 2016, 24, (4), pp. 12141226.
    9. 9)
      • 12. Gong, D., Shao, X., Li, W., et al: ‘Optimal linear attitude estimators via geometric analysis’, J. Zhejiang Univ. SCIENCE A, 2011, 12, (11), pp. 873882.
    10. 10)
      • 3. Suh, Y.S.: ‘Orientation estimation using a quaternion-based indirect Kalman filter with adaptive estimation of external acceleration’, IEEE Trans. Instrum. Meas., 2010, 59, (12), pp. 32963305.
    11. 11)
      • 1. Markley, F.L., Crassidis, J.L.: ‘Fundamentals of spacecraft attitude determination and control’ (Springer, 2014), vol. 33.
    12. 12)
      • 15. Yang, Y., Zhou, Z.: ‘An analytic solution to Wahbas problem’, Aerosp. Sci. Technol., 2013, 30, (1), pp. 4649.
    13. 13)
      • 22. Sabatini, A.M.: ‘Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation’, Sensors, 2011, 11, (10), pp. 91829206.
    14. 14)
      • 24. Savage, P.G.: ‘Strapdown analytics’ (Strapdown Associates Maple Plain, MN, 2000), vol. 2.
    15. 15)
      • 25. Titterton, D., Weston, J.L.: ‘Strapdown inertial navigation technology’ (IET, 2004), vol. 17.
    16. 16)
      • 14. Yang, Yaguang: ‘Attitude determination using Newton's method on Riemannian manifold’, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2015, 229, (14), pp. 27372742.
    17. 17)
      • 5. Zhou, Z., Li, Y., Liu, J., et al: ‘Equality constrained robust measurement fusion for adaptive Kalman-filter-based heterogeneous multi-sensor navigation’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (4), pp. 21462157.
    18. 18)
      • 11. Mortari, D.: ‘ESOQ: a closed-form solution to the Wahba problem’, J. Astronaut. Sci., 1997, 45, (2), pp. 195204.
    19. 19)
      • 10. Markley, F.L.: ‘Attitude determination using vector observations – a fast optimal matrix algorithm’, J. Astronaut. Sci., 1993, 41, (2), pp. 261280.
    20. 20)
      • 16. Shuster, M.D., Natanson, G.: ‘Quaternion computation from a geometric point of view’, 1993, pp. 545556.
    21. 21)
      • 13. Psiaki, M.L., Hinks, J.C.: ‘Numerical solution of a generalized Wahba problem for a spinning spacecraft’, J. Guid. Control Dyn., 2012, 35, (3), pp. 764773.
    22. 22)
      • 7. Markley, F.L., Mortari, D.: ‘How to estimate attitude from vector observations’, Adv. Astronaut. Sci., 2000, 103, (PART III), pp. 19791996.
    23. 23)
      • 9. Shuster, M.D., Oh, S.D.: ‘Three-axis attitude determination from vector observations’, J. Guid. Control Dyn., 1981, 4, (1), pp. 7077.
    24. 24)
      • 2. Li, W., Wang, J.: ‘Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems’, J. Navig., 2012, 66, (01), pp. 99113.
    25. 25)
      • 6. Zhou, Z., Li, Y., Zhang, J., et al: ‘Integrated navigation system for a low-cost quadrotor aerial vehicle in the presence of rotor influences’, J. Surv. Eng., 2016, 4, (May), pp. 113.
    26. 26)
      • 17. Valenti, R.G., Dryanovski, I., Xiao, J.: ‘A linear Kalman filter for MARG orientation estimation using the algebraic quaternion algorithm’, IEEE Trans. Instrum. Meas., 2016, 65, (2), pp. 467481.
    27. 27)
      • 8. Wahba, G.: ‘A least squares estimate of satellite attitude’, 1965, p. 409.
    28. 28)
      • 21. Jennings, A., McKeown, J.J.: ‘Matrix computation’ (John Wiley & Sons Inc, 1992).
    29. 29)
      • 19. Salychev, O.S.: ‘Applied inertial navigation: problems and solutions’ (BMSTU Press Moscow, Russia, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0202
Loading

Related content

content/journals/10.1049/iet-smt.2016.0202
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address