access icon free Structural damage estimation in mid-rise reinforced concrete structure based on time–frequency analysis of seismic accelerograms

The aim of this study is to evaluate the intensity and damage potential of seismic accelerograms on structures combining a fuzzy inference system with a set of new seismic intensity parameters. The proposed seismic parameters stem from the energy content of seismic signals. More specifically, a time-window is utilised to define the strong motion duration of seismic excitations and the ensemble empirical mode decomposition is employed for a time–frequency analysis of the selected strong motion area. The maximum inter-storey drift ratio is selected as the seismic structural damage index. Strong interdependence between the proposed seismic intensity parameters and the selected damage index is reported. The membership functions of the fuzzy system are tuned by means of a genetic algorithm. The effectiveness of the proposed fuzzy model is tested on a reinforced concrete frame structure. The methodology should be repeated for every new examined structure and it can be applied to other building types with minor changes. Numerical results indicate total mean square error <0.25 for the maximum inter-storey drift ratio estimation and 91% correct classification rate to seismic categories, revealing the effectiveness of the fuzzy model to estimate numerically the structural damage.

Inspec keywords: genetic algorithms; structural engineering; reinforced concrete; earthquake engineering; seismology; time-frequency analysis; fuzzy reasoning

Other keywords: time-frequency analysis; seismic intensity parameters; seismic structural damage index; fuzzy model; midrise reinforced concrete structure; fuzzy inference system; seismic accelerograms; structural damage estimation; genetic algorithm

Subjects: Construction industry; Vibrations and shock waves (mechanical engineering); Mathematical analysis; Mechanical structures; Optimisation

References

    1. 1)
    2. 2)
      • 19. ‘PEER Ground Motion Database, Pacific Earthquake Engineering Research Center’. Available at http://www.peer.berkeley.edu/products/strong_ground_motion_db.html, assessed 13 March 2016.
    3. 3)
      • 29. Kaya, M., Alhajj, R.: ‘Genetic algorithms based optimization of membership functions for fuzzy weighted association rules mining’. Proc. Int. Conf. Symp. on Computers and Communications, ISCC, 2011, pp. 110115.
    4. 4)
      • 12. Husid, R.: ‘Analisis de Terremoros: Analisis General’, Rev. IDIEM, 1969, 8, (1), pp. 2142.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 15. Joyner, W.B., Boore, D.M.: ‘Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California earthquake’, Bull. Seismol. Soc. Am., 1981, 71, pp. 20112038.
    9. 9)
      • 8. Calabrese, A., Serino, G., Strano, S., et al: ‘An extended Kalman filter procedure for damage detection of base-isolated structures’. IEEE Workshop on Environmental Energy and Structural Monitoring Systems, 2014, pp. 16.
    10. 10)
    11. 11)
    12. 12)
      • 21. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’. Proc. Int. Conf. of the Royal Society A, London, 1998, vol. 454, pp. 903995.
    13. 13)
    14. 14)
    15. 15)
      • 18. Arias, A.: ‘A measure of earthquake intensity in seismic design for nuclear power plants’, in Hansen, R.J. (Ed.), Seismic Design in Nuclear Power Plants (MIT Press, Cambridge, MA, 1970).
    16. 16)
    17. 17)
      • 17. Meskouris, K.: ‘Structural dynamics’ (Ernst & Sohn, Berlin, 2000).
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 1. Structural Engineers Association of California (SEAOC): ‘Vision 2000: performance based seismic engineering of buildings’ (Sacramento, California, 1995).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 24. Kappos, A.J.: ‘Sensitivity of calculated inelastic seismic response to input motion characteristics’. Proc. Int. Conf. of the Fourth U.S. National Conf. on Earthquake Engineering, EERI, Oakland California, 1990, pp. 2534.
    26. 26)
    27. 27)
      • 28. Sivanandam, S.N., Deepa, S.N.: ‘Introduction to genetic algorithms’ (Springer, Verlag, Germany, 2008).
    28. 28)
      • 26. Spiegel, M.R.: ‘Theory and problems of statistics’ (McGraw-Hill, London, 1992).
    29. 29)
      • 16. Housner, G.W.: ‘Spectrum intensities of strong motion earthquakes’. Proc. Int. Conf. of Symp. on Earthquake and Blast Effects on Structures, EERI, June 1952, pp. 2136.
    30. 30)
      • 13. Vrochidou, E., Alvanitopoulos, P., Andreadis, I., et al: ‘Adaptive neuro-fuzzy inference system in structural damage assesment’. Proc. Int. Conf. on IASTED on Signal, Image Processing, Pattern Recognition and Applications, Crete, Greece, June 2011, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0129
Loading

Related content

content/journals/10.1049/iet-smt.2016.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading