http://iet.metastore.ingenta.com
1887

Planetary gearbox fault diagnostic method using acoustic emission sensors

Planetary gearbox fault diagnostic method using acoustic emission sensors

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new acoustic emission (AE) sensor-based planetary gearbox (PGB) fault diagnosis method is presented. The method includes a heterodyne-based AE data acquisition system, empirical mode decomposition (EMD)-based AE signal analysis method, and computation of condition indicators (CIs) for PGB fault diagnosis. The heterodyne technique is hardware-implemented to downshift the sampling frequency of AE signals at a rate compatible to vibration analysis. The sampled AE signals are processed using EMD to extract PGB fault features and compute the CIs. The CIs are input into supervised learning algorithms for PGB fault diagnosis. The method is validated on a set of seeded localised faults on all gears: sun gear, planetary gear, and ring gear. The validation results have shown a promising PGB fault diagnostic performance using the presented method.

References

    1. 1)
      • 1. Sheng, S.: ‘Gearbox reliability database: yesterday, today, and tomorrow’. NREL Technical Report, No. PR-5000-63106, 2014, pp. 114.
    2. 2)
      • 2. Sheng, S., Link, H., LaCava, W., et al: ‘Wind turbine drivetrain condition monitoring during GRC phase 1 and phase 2 testing’. NREL Technical Report NREL/TP, 5000-52748, 2011, pp. 149.
    3. 3)
      • 3. Astridge, D.G.: ‘Helicopter transmissions – design for safety and reliability’. J. Aerosp. Eng., 1989, 203, (2), pp. 123138.
    4. 4)
      • 4. Samuel, P.D., Conroy, J.K., Pines, D.J.: ‘Planetary transmission diagnostics’. NASA Technical Report: NASA/CR, 2004-213068, 2004, pp. 183.
    5. 5)
    6. 6)
    7. 7)
      • 7. Lewicki, D.G., Laberge, K.E., Ehinger, R.T., et al: ‘Planetary gearbox fault detection using vibration separation technique’. NASA Technical Report: NASA/CR, 2004-213068, 2011, pp. 114.
    8. 8)
      • 8. Yoshioka, T., Fujiwara, T.: ‘Application of acoustic emission technique to detection of rolling bearing failure’, Annu. Meeting ASME, 1984, 14, (1), pp. 5576.
    9. 9)
      • 9. Tandon, N., Mata, S.: ‘Detection of defects in gears by acoustic emission measurements’, J. Acoust. Emission, 1999, 17, (1–2), pp. 2327.
    10. 10)
    11. 11)
      • 11. Scheer, C., Reimche, W., Bach, F.W.: ‘Early fault detection at gear units by acoustic emission and wavelet analysis’, J. Acoust. Emission, 2007, 25, (1), pp. 331340.
    12. 12)
    13. 13)
    14. 14)
      • 14. Bechhoefer, E., Qu, Y., Zhu, J., et al: ‘Signal processing technique to improve an acoustic emission sensors’, Proc. Annual Conf. PHM Society, New Orleans, LA, USA, October 2013, pp. 18.
    15. 15)
      • 15. Yoon, J., He, D., Van Hecke, B.: ‘A PHM approach to additive manufacturing equipment health monitoring, fault diagnosis, and quality control’, Annual Conf. PHM Society, Fort Worth, TX, USA, Sep. 2014, pp. 19.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. He, D., Li, R., Zhu, J.: ‘Plastic bearing fault diagnosis based on a two-step data mining approach’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 34292013.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 26. Yoon, J., He, D., Qiu, B.: ‘Full ceramic bearing fault diagnosis using LAMSTAR neural network’, IEEE PHM Conf., Gaithersburg, MD, USA, June 2013, pp. 19.
    27. 27)
      • 27. Fessenden, R. A.: ‘Electric Signaling Apparatus’. US Patent 1050441A, 14 January.
    28. 28)
      • 28. Qu, Y., Van Hecke, B., He, D., et al: ‘Gearbox fault diagnosis using AE sensors with low sampling rate’, J. Acoust. Emission, 2013, 31, (1), pp. 6790.
    29. 29)
      • 29. Teager, H.M., Teager, S.M.: ‘Evidence for nonlinear sound production mechanisms in the vocal tract’, in Hardcastle, W. J., Marchal, A. (ed.): ‘Time frequency and time-scale analysis’ (Springer, Netherlands, 1992, vol. 55), pp. 345348.
    30. 30)
      • 30. Altman, N.S.: ‘An introduction to kernel and nearest-neighbor nonparametric regression’, Am. Stat., 1992, 46, (3), pp. 175185.
    31. 31)
    32. 32)
    33. 33)
      • 33. Kohonen, T.: ‘Self-organization and associative memory’, (Springer-Verlag, Berlin, 1984).
    34. 34)
    35. 35)
      • 35. Graupe, D.: ‘Principles of artificial neural networks’ (World Scientific Publishing, 3rd edn., 2013).
    36. 36)
      • 36. Bartelmus, W., Zimroz, R.: ‘Vibration spectra characteristic frequencies for condition monitoring of mining machinery compound and complex gearboxes’, Sci. P. Inst. Min. Conf., 2011, 133, (40), pp. 1734.
    37. 37)
      • 37. Yoon, J., He, D., Van Hecke, B.: ‘Vibration based wind turbine planetary gearbox fault diagnosis using spectral averaging’, AWEA Wind Power Conf., Orlando, FL, USA, May 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2014.0375
Loading

Related content

content/journals/10.1049/iet-smt.2014.0375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address