http://iet.metastore.ingenta.com
1887

Vibration parameter estimation methods for ultrasonic measurement systems – a review

Vibration parameter estimation methods for ultrasonic measurement systems – a review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A review of vibration signal estimation techniques employed in ultrasonic vibration measurement systems is presented. The review focuses on the Doppler signal extraction methods including the theory and analysis pertaining to the background of ultrasonic vibration measurement techniques. The phase modulated received signal in the vibration measurement system involves constant phase shift because of ultrasonic path length, phase shift introduced by Doppler effect because of vibrating object and the parametric phase shift caused by interaction of high frequency ultrasonic wave and low pressure developed by vibrating object. Among the three phase shifts, the Doppler phase shift contains the vibrating signal information and the extraction of Doppler signal helps in knowing the velocity of the vibrating object, amplitude and phase of the vibration. Various techniques of Doppler phase shift retrieval are categorised based on the modulation index estimation procedures from the received ultrasonic signal. An analysis is made based on the information retrieval methods for estimation of vibration signal parameters, range of the vibration amplitude, frequency and the preferable carrier frequency for transmission. Further, the analysis also presents various applications in which ultrasonic vibration measurements system are employed successfully.

References

    1. 1)
    2. 2)
      • 2. Linbo, R., Geng, T., Jing, W., Haitao, L., Hongfa, H.: ‘Development of high-speed non-contact vibration measurement system’. Proc. Int. Conf. on Electronic Measurement and Instruments, ICEMI2011, pp. 244247.
    3. 3)
    4. 4)
      • 4. Hardy, H.C.: ‘Apparatus for Measuring Vibrations’, Patent 2733597, Feb.1956.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Sikdar, S., Kim, Y., Leotta, D.F., Primozich, J.F., Beach, K.W.: ‘Ultrasonic techniques for assessing wall vibrations in stenosed arteries’. Proc. IEEE EMBS, September 2004, pp. 13251328.
    15. 15)
    16. 16)
    17. 17)
      • 17. Sikdar, S., Zhuang, B., Zaccardi, M., Leotta, D., Beach, K.W., Kim, Y.: ‘Ultrasonic doppler measurement of tissue vibrations: opportunities and limitations’. Proc. IEEE Ultrasonics Symp., 2006, pp. 13411344.
    18. 18)
    19. 19)
      • 19. Persson, H.W., Hakansson, H.: ‘Remote vibration measurements using airborne ultrasound’. Proc. IEEE Ultrasonics Symp., 1996, pp. 689692.
    20. 20)
    21. 21)
      • 21. Royer, D., Casula, O., Matar, O.B., Patat, F.: ‘An ultrasonic phase sensitive method for surface velocity measurements in a liquid’. Proc. IEEE Ultrasonics Symp., 1996, pp. 635638.
    22. 22)
      • 22. Matar, O.B., Remenieras, J.P., Pizarro, L., Roncin, A., Patat, F.: ‘Performances of the parametric acoustic vibrometer for vibration sensing’. Proc. IEEE Ultrasonics Symp., 1997, pp. 605607.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 36. Zabolotskaya, E.A., Khokhlov, R.V.: ‘Quasi-planes waves in the nonlinear acoustics of confined beams’, Sov. Phys. Acoust., 1969, 15, (1), pp. 3540.
    37. 37)
      • 37. Kuznetsov, V.P.: ‘Equations of nonlinear acoustics’, Sov. Phys. Acoust., 1971, 16, pp. 467470.
    38. 38)
      • 38. Remenieras, J.P., Calle, S., Matar, O.B., Patat, F.: ‘Nonlinear interactions of sound fields generated by a focused annular array: application to vibro-acoustography’. Proc. IEEE Ultrasonics Symp., 2000, pp. 15731576.
    39. 39)
    40. 40)
      • 40. Everest, F.A.: ‘Master handbook of acoustics’, 2001, (McGraw-Hill, 4th edn.).
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 46. Zhao, S., Zheng, Y.: ‘High sensitivity vibration estimation using pulse echo Doppler ultrasound’. Proc. IEEE Ultrasonics Symp., 2003, pp. 19231926.
    47. 47)
    48. 48)
    49. 49)
      • 49. Zheng, Y., Chen, S., Tan, W., Greenleaf, J.F.: ‘Kalman filter motion detection for vibro-acoustography using pulse echo ultrasound’. Proc. IEEE Ultrasonics Symp., 2003, pp. 18121815.
    50. 50)
      • 50. Zheng, Y., Chen, S., Tan, W., Zhang, X., Greenleaf, J.F.: ‘Detection of shear wave propagation in an artery using pulse echo ultrasound and Kalman filtering’. Proc. IEEE Ultrasonics Symp., 2004, pp. 12511253.
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • 56. Dias, J.M.B., Leitao, J.M.N.: ‘Nonparametric estimation of mean doppler and spectral width’, Proc. IEEE Trans. Geosci. Remote Sens., 2000, 38, (1), pp. 217282.
    57. 57)
    58. 58)
    59. 59)
      • 59. Schadt, F., Mohr, F., Holzer, M.: ‘Application of Kalman filters as a tool for phase and frequency demodulation of IQ signals’. IEEE Region 8 Sibircon, 2008, pp. 421424.
    60. 60)
    61. 61)
      • 61. Lindsey, W.C., Chie, C.M.: ‘A survey of digital phase-locked loops’. Proc. IEEE, 1981, vol. 69, no. 4, pp. 410431.
    62. 62)
    63. 63)
    64. 64)
    65. 65)
      • 65. Raz, G.H.: ‘Modeling and simulation of FM detection by zero-crossing in the presence of noise and DS interference’. Proc. IEEE Int. Conf. on Vehicular Technology, 1996, pp. 14091413.
    66. 66)
    67. 67)
      • 67. Spiegel, C., Rickers, S., Bruck, G.H., Jung, P.: ‘Impact of frequency offsets on zero-crossing demodulation based receivers’. Proc. Int. IEEE Conf. on Applied Sciences in Biomedical and Communication Technologies, 2010, pp. 15.
    68. 68)
    69. 69)
    70. 70)
      • 70. Cherek, B.: ‘Contactless measurement of mechanical vibrations based on the doppler effect’. IEE Proc., April 1987, vol. 134. Pt. A, no. 4, pp. 339342.
    71. 71)
    72. 72)
    73. 73)
      • 73. Nakamura, M., Ishikawa, T., Kobashi, S., Kuramoto, K., Hata, Y.: ‘Blood flow detection under skull by doppler effect’. Proc. IEEE Int. Conf. on Systems, Man, and Cybernatics, 2011, pp. 758763.
    74. 74)
      • 74. Zhao, S., Zheng, Y., Chen, S., Greenleaf, J.F.: ‘High sensitivity vibration estimation using pulse echo doppler ultrasound’. Proc. IEEE Ultrasonics Symp., 2003, pp. 19231926.
    75. 75)
      • 75. Sunagawa, K., Kanai, H., Tanaka, M.: ‘Simultaneous measurement of blood flow and arterial wall vibrations in radial and axial directions’. Proc. IEEE Ultrasonics Symp., 2000, pp. 15411544.
    76. 76)
    77. 77)
      • 77. Papageorgiou, C., Kosmatopoulos, C., Laopoulos, T.: ‘A method for remote measurements of velocity for vibration analysis’, IEEE Trans. Instrum. Meas., 1999, 2, pp. 14911494.
    78. 78)
      • 78. Rowlands, A., Duck, F.A., Cunningham, J.L.: ‘Bone vibration measurement using ultrasound: application to detection of hip prosthesis loosening’. Medical Engineering and Physics, 2008, pp. 278284.
    79. 79)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2014.0176
Loading

Related content

content/journals/10.1049/iet-smt.2014.0176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address