Fast circuit model for interaction of openended rectangular waveguide probes with arbitraryshape surface cracks in metals
Fast circuit model for interaction of openended rectangular waveguide probes with arbitraryshape surface cracks in metals
 Author(s): Iman Ahanian ; Seyed Hossein Hesamedin Sadeghi ; Rouzbeh Moini
 DOI: 10.1049/ietsmt.2014.0090
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
 Author(s): Iman Ahanian ^{1} ; Seyed Hossein Hesamedin Sadeghi ^{1} ; Rouzbeh Moini ^{1}


View affiliations

Affiliations:
1:
Department of Electrical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran

Affiliations:
1:
Department of Electrical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran
 Source:
Volume 9, Issue 4,
July 2015,
p.
427 – 434
DOI: 10.1049/ietsmt.2014.0090 , Print ISSN 17518822, Online ISSN 17518830
The study proposes a fast modelling technique to predict output signal of an openended rectangular waveguide when scanning an arbitraryshape surface crack in a metal. In this technique, the crack is first segmented into an appropriate number of short rectangular waveguides each of which is modelled by a twoport network with an equivalent RLC circuit. The generalised scattering matrix technique is then used to predict the probe output signal. The efficiency of the proposed model is demonstrated by comparing the simulation results of several case studies with measurements and those obtained using the modematching method and a commercial finite integration technique code.
Inspec keywords: metals; twoport networks; equivalent circuits; rectangular waveguides; surface cracks; Smatrix theory; circuit simulation; crack detection; RLC circuits
Other keywords: finite integration technique code; generalised scattering matrix technique; equivalent RLC circuit; metals; twoport network; openended rectangular waveguide probes; modematching method; arbitraryshape surface cracks; fast circuit model
Subjects: Computeraided circuit analysis and design; Materials testing; Waveguides and microwave transmission lines; Algebra; Filters and other networks
References


1)

1. McFadyen, N.B., Bell, R., Vosikovsky, O.: ‘Fatigue crack growth of semielliptical surface cracks’, Int. J. Fatigue, 1990, 12, (1), pp. 43–50 (doi: 10.1016/01421123(90)90341B).


2)

2. Halliday, M.D., Beevers, C.J.: ‘The dc electrical method for crack length measurement’, in Beevers, C.J., (Ed.): ‘The measurement of crack length and shape during fracture and fatigue’ (Eng. Mater. Advisory Service Ltd., Warley, UK, 1980), pp. 85–112.


3)

3. Enokizono, M., Todaka, T., Tuchida, Y., et al: ‘Finite element analysis of a moving magnetic flux type sensor developed for nondestructive testing’, IEEE Trans. Magn., 1999, 35, (3), pp. 1853–1856 (doi: 10.1109/20.767394).


4)
 C.V. Dodd , W.E. Deeds . Analytical solutions to eddycurrent probecoil problems. J. Appl. Phys. , 2829  2838

5)

5. MirshekarSyahkal, D., Sadeghi, S.H.H.: ‘Surface magnetic field measurement technique for nondestructive testing of metals’, Electron. Lett., 1994, 30, (3), pp. 210–211 (doi: 10.1049/el:19940162).


6)

6. Yeh, C.Y., Zoughi, R.: ‘A novel microwave method for detection of long surface cracks in metals’, IEEE Trans. Instrum. Meas., 1994, 43, (5), pp. 719–725 (doi: 10.1109/19.328896).


7)

7. Sakai, Y., Yusa, N., Hasizume, H.: ‘Numerical evaluation of microwave testing for pipe thinning’, in Chady, T., Gratkowski, S., Takagi, T., Udpa, S.S., et al (Eds.): ‘Studies in applied electromagnetics and mechanics’ (IOS Press, 2011), vol. 35, pp. 111–116.


8)

8. Gunes, O., Buyukozturk, O.: ‘Simulationbased microwave imaging of plain and reinforced concrete for nondestructive evaluation’, Int. J. Phys. Sci., 2012, 7, (3), pp. 383–393.


9)

9. Huber, C., Abiri, H., Ganchev, S.I., et al: ‘Analysis of the crack characteristic signal using a generalized scattering matrix representation’, IEEE Trans. Microw. Theory Tech., 1997, 45, (4), pp. 477–484 (doi: 10.1109/22.566626).


10)

10. Huber, C., Abiri, H., Ganchev, S.I., et al: ‘Electromagnetic modelling of the interaction of cracks in metallic surfaces with openended waveguides using an equivalent magnetic current’, in Thompson, D.O., Chimenti, D.E. (Eds.): ‘Review of progress in quantitative nondestructive evaluation’ (Plenum Press, 1996), vol. 15, pp. 719–726.


11)

11. Mazlumi, F., Sadeghi, S.H.H., Moini, R.: ‘Interaction of rectangular openended waveguides with surface tilted long cracks in metals’, IEEE Trans. Instrum. Meas., 2006, 55, (6), pp. 2191–2197 (doi: 10.1109/TIM.2006.884282).


12)

12. Mazlumi, F., Sadeghi, S.H.H., Moini, R.: ‘Analysis technique for interaction of rectangular openended waveguides with surface cracks of arbitrary shape in metals’, NDT&E Int., 2003, 36, (5), pp. 331–338 (doi: 10.1016/S09638695(03)000057).


13)

17. Mazlumi, F., Sadeghi, S.H.H., Moini, R.: ‘Interaction of an openended rectangular waveguide probe with an arbitraryshape surface crack in a lossy conductor’, IEEE Trans. Microw. Theory Tech., 2006, 54, (10), pp. 3706–3711 (doi: 10.1109/TMTT.2006.882879).


14)
 Z. Chen , G. Preda , O. Mihalache , K. Miya . Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach. IEEE Trans. Magn. , 2 , 1025  1028

15)

15. Ravan, M., Sadeghi, S.H.H., Moini, R.: ‘Neural network approach for determination of fatigue crack depth profile in a metal, using alternating current field measurement data’, IET Sci. Meas. Technol., 2008, 2, (1), pp. 32–38 (doi: 10.1049/ietsmt:20070005).


16)
 S. Lloyd . Least squares quantisation in PCM. IEEE Trans. Inf. Theory , 129  137

17)

17. Poza, D.M.: ‘Microwave engineering’ (John Wiley & Sons, 2005, 3rd edn.).


18)

18. ‘CST Computer Simulation Technology’, http://www.cst.com, accessed March 2014.


19)

19. Ahanian, I., Sadeghi, S.H.H., Moini, R.: ‘A fast circuit model for interaction of openended rectangular waveguide probes with surface long cracks in metals’. Proc. IEEE Sensors Applications Symp., San Antonio, USA, February 2011, pp. 57–59.


1)