http://iet.metastore.ingenta.com
1887

Hybrid power system state estimation using Taguchi differential evolution algorithm

Hybrid power system state estimation using Taguchi differential evolution algorithm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hybridising of different optimisation techniques provides a scope to improve global exploration capability of the resulting method. In this study, an enhanced differential evolution (DE) algorithm, called hybrid Taguchi-differential evolution (TDE) algorithm is proposed to solve power system state estimation problem as an optimisation problem. TDE combines the positive properties of the Taguchi's method to the classical DE algorithm for improving the accuracy and reliability of state estimation problem. The systematic reasoning ability of the Taguchi method is incorporated after crossover operation of DE algorithm to obtain the potential chromosome, better convergence rate and subsequently, to improve the robustness of the results. The proposed method is tested on IEEE test bus systems along with two ill-conditioned systems under different simulated conditions. The results reveal that solutions yield towards global optimum and it compares far better than conventional DE, particle swarm optimisation, gravitational search algorithm and weighted least square based state estimation techniques in terms of optimisation performance, solution quality and the statistical error analysis.

References

    1. 1)
    2. 2)
      • 2. Do Coutto Filho, M.B., Leite da Silva, A.M., Calvo Cantera, J.M.C., Da Silva, R.A.: ‘Information debugging for real-time power systems monitoring’. IEE Proc., 1989, 136, (3), pp. 145152.
    3. 3)
      • 3. Hajian, M., Ranjbar, A.M., Amraee, T., Shirani, A.R.: ‘Optimal placement of phasor measurement units: particle swarm optimization approach’. Proc. Int. Conf. IEEE Intelligent Systems Applications to Power Systems, Toki Messe, Niigata, November 2007, pp. 16.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 9. Shahraeini, M., Javidi, M.H.: ‘A survey on topological observability of power systems’. Proc. Int. Conf. IEEE Power Engineering and Automation Conf., Wuhan, September 2007, pp. 373376.
    10. 10)
    11. 11)
      • 11. Gou, B.: ‘Observability analysis for state estimation using Hachtel's augmented matrix method’, Int. J. Electr. Power Syst. Res., 2006, 77, (7), pp. 865875.
    12. 12)
    13. 13)
    14. 14)
      • 14. Hernandez, E.J.C., Maldonado, J.R.C.: ‘A self-adaptive evolutionary programming approach for power system state estimation’. Proc. Int. Conf. IEEE Mid-West Symp. Circuits and Systems, San Juan, PR, August 2007, pp. 571575.
    15. 15)
      • 15. Li, W.G., Li, J., Gao, A., Yang, J.H.: ‘Review and research trends on state estimation of electrical power systems’. Proc. Int. Conf. IEEE Power and Energy Engineering, Wuhan, March 2011, pp. 14.
    16. 16)
    17. 17)
      • 17. Hao, L., Boyuan, H.: ‘State estimation method using fast decoupled P & Q retaining nonlinearity’, Int. J. Autom. Electr. Power Syst., 1995, 19, (6), pp. 2630.
    18. 18)
    19. 19)
    20. 20)
      • 20. Jun, Z., Abur, A.: ‘Effect of phasor measurements on the choice of reference bus for state estimation’. Proc. Int. Conf. IEEE Power Engineering Society General Meeting, Tampa, FL, June 2007, pp. 15.
    21. 21)
    22. 22)
    23. 23)
      • 23. Abur, A., Exposito, A.G.: ‘Power system state estimation theory and implementation’ (CRC Press, 2004, 1st edn.).
    24. 24)
    25. 25)
    26. 26)
      • 26. Abdallah, E.N., Ghazala, A.A., Hanafy, N.: ‘Power system state estimation using genetic algorithms’. Proc. Int. Conf. 10th Middle East Power Systems, May 2005, pp. 66976..
    27. 27)
      • 27. Hossam-Eldin, A.A., Abdallah, E.N., El-Nozahy, M.S.: ‘A modified genetic based technique for solving the power system state estimation problem’, Int. J. World Acad. Sci. Eng. Technol., 2009, 3, (7), pp. 307316.
    28. 28)
      • 28. Huo, C.L., Lin, S.Y., Lai, T.Y., Lien, Y.S., Sun, T.Y.: ‘Multi-objective differential evolution with Taguchi-based adjustable proportional distribution’. Proc. Int. Conf. World Congress on Computational Intelligence, Brisbane, QLD, June 2012, pp. 18.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 32. Lin, W.M., Gowa, H.J., Tsai, M.T.: ‘An efficient hybrid Taguchi-immune algorithm for the unit commitment problem’, Int. J. Expert Syst. Appl., 2011, 38, (11), pp. 1366213669.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 46. Storn, R., Price, K.: ‘Minimizing the real functions of the icec'96 contest by differential evolution’. Proc. Int. Conf. on Evolutionary Computation, Nagoya, May 1996, pp. 842844.
    47. 47)
      • 47. Brest, J., Zamuda, A., Skovic, B.B., Maucec, M.S., Zumer, V.: ‘Dynamic optimization using self-adaptive differential evolution’. Proc. Int. Conf. IEEE Evolutionary Computation, Trondheim, May 2009, pp. 415422.
    48. 48)
    49. 49)
      • 49. Wood, A.J., Woollenberg, B.: ‘Power generation operation and control’ (Wiley press, 1996, 1st edn.).
    50. 50)
    51. 51)
    52. 52)
      • 52. Christie, R.: Power System Test Archive. http://www.ee.washington.edu/research/pstca (1999, accessed 05 January 2014).
    53. 53)
    54. 54)
      • 54. Nishiya, K., Hasegawa, J., Koike, T.: ‘Dynamic state estimation including anomaly detection and identification for power systems’, IEE Proc., 1982, 129, (5), pp. 192198.
    55. 55)
    56. 56)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2014.0082
Loading

Related content

content/journals/10.1049/iet-smt.2014.0082
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address