access icon free On-line parameter identification of power plant characteristics based on phasor measurement unit recorded data using differential evolution and bat inspired algorithm

Parameter estimation and dynamic modelling of power systems and their components are basis of design, planning and stability or security assessment in power systems. This study considers the estimation of power system model parameters by a global identification framework based on the maximum-likelihood principle. The proposed framework is formulated as a non-linear optimisation problem, which is solved by a hybrid method based on the bat-inspired algorithm and differential evolution method. The combination of these algorithms makes the hybrid method faster and it obtains closer to the global minimum than a pure global method. Since noise and model uncertainties are inherent parts of system identification, the effect of these factors on the performance of the proposed identification framework are studied. Results based on synthetic data in frequency domain show that the estimated parameters are close to the correct values even in the presence of significant measurement noise and considerable uncertainties.

Inspec keywords: phasor measurement; frequency-domain analysis; power system security; measurement uncertainty; power system parameter estimation; power system stability; maximum likelihood estimation; power system planning; evolutionary computation; particle swarm optimisation; measurement errors; nonlinear programming

Other keywords: hybrid method; power plant characteristics; nonlinear optimisation problem; power system security assessment; maximum likelihood estimation; dynamic modelling; online power system model parameter estimation; power system identification; differential evolution algorithm; frequency domain analysis; power system planning; bat inspired algorithm; measurement uncertainty; model uncertainty; measurement noise; phasor measurement unit; power system stability

Subjects: Power system planning and layout; Optimisation techniques; Other topics in statistics; Power system measurement and metering; Power system protection; Power system management, operation and economics

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 27. Abiri, E., Rashidi, F., Niknam, T.: ‘An optimal PMU placement method for power system observability under various contingencies’, Int. Trans. Electr. Energy Syst., 2014, doi: 10.1002/etep.1848.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 24. Tsai, C.-C., Lee, W.-J., Nashawati, E., Wu, C.-C., Lan, H. -W.: ‘PMU based generator parameter identification to improve the system planning and operation’. IEEE Int. Conf. on Power and Energy, 2012, pp. 18.
    9. 9)
    10. 10)
    11. 11)
      • 41. Baziar, A., Kavoosi-Fard, A., Zare, J.: ‘A novel self-adaptive modification approach based on bat algorithm for optimal management of renewable MG’, J. Intell. Learn. Syst. Appl., 2013, 5, pp. 1118.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 31. Xu, B., Abur, A.: ‘Observability analysis and measurement placement for systems with PMUs’. IEEE/PES Power Systems Conf., 2004, pp. 943946.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 36. Marple, L.: ‘Digital spectral analysis’ (Prentice-Hall, Englewood Cliffs, NJ, 1987).
    30. 30)
    31. 31)
      • 52. Tsai, C.C.: ‘PMU-based parameter identification for the synchronous generator dynamic model’. PhD thesis, The University of Texas at Aarlington, 2011.
    32. 32)
      • 22. Rashidi, F., Abiri, E., Niknam, T., Salehi, M.R.: ‘Parameter identification of power plant characteristics based on PMU data using differential evolution based improved shuffled frog leaping algorithm’, Int. J. Bio-Inspired Comput., 2014 (in press).
    33. 33)
      • 47. Arafa, M., Sallam, E.A., Fahmy, M.M.: ‘An enhanced differential evolution optimization algorithm’. IEEE Int. Conf. on DICTAP, 2014, pp. 216225.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 14. Welch, G., Bishop, G.: ‘An introduction to the Kalman filter’. TR95-041, Department of Computer Science, University of North Carolina at Chapel Hill, April2004.
    38. 38)
    39. 39)
    40. 40)
      • 43. Wang, X., Zhao, S.: ‘Differential evolution algorithm with self-adaptive population resizing mechanism’, Math. Problems Eng., 2013, 2013, pp. 114.
    41. 41)
      • 37. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: ‘Computational ocean acoustics’ (Springer, 2011, 2nd edn.).
    42. 42)
      • 42. Yang, X.S.: ‘Bat algorithm for multi-objective optimization’, Int. J. Bio-Inspired Comput., 2011, 3, (5), pp. 267274.
    43. 43)
      • 16. Cheng, Y., Lee, W.-J., Huang, S.-H., Adams, J.: ‘Dynamic parameter identification of generators for smart grid development’. Power Engineering Society IEEE General Meeting – PES, 2011, pp. 17.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2014.0022
Loading

Related content

content/journals/10.1049/iet-smt.2014.0022
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading