access icon free Moisture and electrical discharges effect on naphthenic mineral oil properties

The physicochemical properties of three transformer mineral oils of different levels of degradation, resulting from exposure to moisture and electrical discharges, are investigated. The first oil is new and untreated whereas the second is taken from a transformer after one year of normal operation; and the third oil is extracted from a 15-year-old operating transformer. The considered parameters are breakdown voltage, dielectric constant ε r, dissipation factor (tan δ) and resistivity. Isothermal charging currents have also been measured under dc for long application times. It is shown that the physicochemical characteristics present major differences depending on the considered oil sample. An easy method enabling to determine the water solubility in oil is proposed; this method is based on the measurement of oil resistivity. To validate a part of the results obtained in laboratory, measurements on an on-load operating transformer have also been achieved. These show that the properties of oils with dissolved water in laboratory are similar to those of oils with really dissolved water inside operating transformers.

Inspec keywords: minerals; water; transformer oil; electric breakdown; permittivity; discharges (electric); solubility; electrical resistivity; moisture

Other keywords: oil resistivity; physicochemical properties; transformer mineral oils; on-load operating transformer; naphthenic mineral oil properties; electrical discharges; resistivity; dissipation factor; moisture; water solubility; breakdown voltage; dielectric constant

Subjects: Gas discharges; Inductors and transformers; Gaseous insulation, breakdown and discharges; Organic insulation; Dielectric breakdown and discharges

References

    1. 1)
      • 15. Moulai, H., Khelfane, I., Nacer, A., Debche, A.: ‘Water content influence on physico-chemical properties of a transformer naphtenic oil’. Proc. Int. Conf. Power and Energy Systems, 2008, Corfu, Greece, pp. 249253.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 24. Moulai, H., Nacer, A., Beroual, A.: ‘Characterisation of partial discharges in mineral oil’. Proc. Int. Conf. Power and Energy systems, 2006, Rhodes, Greece, Paper no. 521–128, pp. 14.
    9. 9)
      • 18. VAISALA, Note d'Application: ‘La prévention de l'eau libre dans un système de lubrification’, Ref. B211029FR-A ©Vaisala2010. Available at http://www.vaisala.fr/Vaisala%20Documents/Application%20notes/avoidingfreewaterinlubricationsystem_B211029FR-A.pdf.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 22. Berger, N.: ‘Liquides isolants en électrotechnique, présentation générale’, Tech. ingénieur, traité Génie Electr., 2012, D 2 470, pp. 120.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 23. Beroual, A., Moulai, H.: ‘Prebreakdown currents analysis in insulating oils under AC voltages – relation to breakdown’, Arch. Electr. Eng., 2001, L, (1), pp. 111124.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2013.0262
Loading

Related content

content/journals/10.1049/iet-smt.2013.0262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading