access icon free Real-time measurement of meteorological parameters for estimating low-altitude atmospheric turbulence strength (C n 2)

The major factor that limits the performance of Free Space Optical Communication is atmospheric turbulence which fluctuates over time in accordance with the variations in local meteorological parameters. Estimating the atmospheric turbulence strength C n 2 with the measurement data becomes significant to find the data rate the system is capable of operating under different outdoor local environmental conditions. Hence, a low cost customised system for continuously measuring the local meteorological data is developed and presented in this study. A field test scintillometer setup is established for a link range of 0.5 km at an altitude of 15.25 m. Specialised sensors are interfaced to the digital architectures to acquire the real-time data corresponding to atmospheric changes. The accuracy and performance of the measurement system are tested against standard instruments and the maximum correlation coefficients of 99.92, 99.63, 99.73 and 99.88% are achieved for wind speed, temperature, relative humidity and pressure, respectively. An experimental model to estimate C n 2 using measured meteorological data is developed and the atmospheric turbulence strength is estimated. The validations of the estimated results with the scintillometer measurement are also analysed. The weather profile and corresponding C n 2 variations at our test field for different seasons in 1 year period are presented and the results are analysed.

Inspec keywords: digital instrumentation; meteorological instruments; atmospheric turbulence; optical communication

Other keywords: fleld test scintillometer setup; maximum correlation coefflcients; real-time measurement; wind speed; digital architectures; low-altitude atmospheric turbulence strength; relative humidity; meteorological parameters; free space optical communication; altitude 15.25 m; wind temperature; weather proflle; pressure

Subjects: Optical communication; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Atmospheric, ionospheric and magnetospheric techniques and equipment; Convection, turbulence, and diffusion in the lower atmosphere; Optical communication

References

    1. 1)
    2. 2)
    3. 3)
      • 18. Ali, M.A.A.: ‘Atmospheric turbulence effect on Free Space Optical Communications’, Int. J. Emerging Technol. Comput. Appl. Sci., 2013, 13, pp. 345351.
    4. 4)
    5. 5)
    6. 6)
      • 20. Coquilla, R.V.: ‘Anemometer Calibration for Wind Energy Applications’, 2010, http://www.otechwind.com/wp-content/uploads/MSC-2010-Paper.pdf.
    7. 7)
      • 21. SHT1X Datasheet: http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity _SHT1xDatasheet_V5.pdf.
    8. 8)
      • 4. Arockia Bazil Raj, A., Arputha Vijaya Selvi, J.: ‘Low cost BER measurement in wireless digital laser communication link with autonomous beam steering system’. Proc. Third Int. Conf. Intelligent Information Systems and Management (IISM'12), Coimbatore, India, 2012, pp. 146151.
    9. 9)
      • 6. Liu, P., Kazaura, K., Wakamori, K., et al: ‘Studies on C2n and its effects on Free Space Optical Communications’. Proc. Eighth Asia-Pacific Symp. on Information and Telecommunication Technologies (APSITT), 2010, pp. 16.
    10. 10)
    11. 11)
      • 27. Cox, M.G., Harris, P.M.: ‘Software support for metrology best practice guide No. 6 uncertainty evaluation’, (NPL, 2006), pp. 1175.
    12. 12)
      • 22. Witzel, J.: ‘My Favorite Experiment’. IEEE Instrumentation & Measurement Magazine, 2008, pp. 4143.
    13. 13)
    14. 14)
      • 26. Guidelines for estimation and expression of uncertainty in measurement, NABL 141, Issue No. 02, Date 02/04/2000.
    15. 15)
      • 3. Bloom, S., Korevaar, E., Schuster, J., et al: ‘Understanding the performance of free-space optics [Invited]’, J. Opt. Netw., 2003, 2, (6), pp. 178199.
    16. 16)
      • 5. Arockia Bazil Raj, A., Arputha Vijaya Selvi, J.: ‘Lower-order adaptive beam steering system in terrestrial free space point-to-point laser communication using fine tracking sensor’. Proc. Int. Conf. Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2011), Thuckalay, India, 2011, pp. 699704.
    17. 17)
      • 24. Serial Communications tutorial: http://www.swarthmore.edu/NatSci/echeeve1/Class/e91/Lectures/E91%2810%29Serial.pdf.
    18. 18)
      • 15. Majumdar, A.K., Ricklin, J.C.: ‘Atmospheric Channel Effects on Free-Space Laser Communications’ and ‘Free-Space Laser Communication with Adaptive Optics: Atmospheric Compensation Experiments’: ‘Free- Space Laser Communications: Principles and Advances: Optical and Fiber Communications Reports’, (Springer, USA, 2008), pp. 956, 247–271.
    19. 19)
      • 2. Font, C.O., Chang, M.P.J.L., Oh, E., et al: ‘Humidity contribution to the refractive index structure function Cn2’. Proc. SPIE 6215, Atmospheric Propagation III, 2006, pp. 19.
    20. 20)
      • 7. Tunick, A., Tikhonov, N., Vorontsov, M., et al: ‘Characterization of optical turbulence (cn2) data measured at the ARLA_LOT Facility’, 2005, (ARL–MR–625).
    21. 21)
    22. 22)
    23. 23)
      • 23. SCP 1000 Datasheet: http://www.sparkfun.com/datasheets/Components/SCP1000-D01.pdf.
    24. 24)
      • 14. Frederickson, P., Davidson, K.: ‘Near-surface scintillation (Cn2) estimates from a buoy using bulk methods during EOPACE’. Proc. RTO SET Symp. E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations, Italy, 1998, pp. 16-116-9.
    25. 25)
    26. 26)
      • 28. Barrios, R., Dios, F.: ‘Wireless optical communications through the turbulent atmosphere: a review’, in Das, N. (Ed.): ‘Optical communications systems’, (InTech, 2012), pp. 340.
    27. 27)
      • 19. Arockia Bazil Raj, A., Arputha Vijaya Selvi, J., Kumar, D.: ‘Experimental analysis and mitigation of atmospheric turbulence effects in terrestrial free space line of sight optical communication using pipelined opto-electronic architecture’, Int. J. Inf. Commun. Tech., 2011, 1-2, pp. 15.
    28. 28)
      • 25. Tutorial: serial communications in Matlab: http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/Serial Communication in Matlab V2.doc.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2013.0236
Loading

Related content

content/journals/10.1049/iet-smt.2013.0236
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading