access icon free Modelling of corona discharge of a tri-electrode system for electrostatic separation processes

The study presents a detailed experimental and numerical analysis of the corona characteristics of a proposed ‘tri-electrode system’ for electrostatic separation applications. The system consists of an ionising wire, a movable auxiliary wire and a non-ionising cylinder, having the same voltage and placed parallel above a grounded plate. A computational technique coupling the method of characteristics and the charge simulation method is developed to model the corona governing equations of the proposed configuration. Influence of the auxiliary wire's position on field modulation of the ionising wire, corona onset and switching on/off of the discharge is established both numerically and experimentally. Dependence of the spatial distributions of the electric field and current density on the system's geometrical characteristics is evaluated and assessed. The study includes a physical model of the corona discharge of this particular electrode arrangement and demonstrates the configuration's specific features and advantages as compared with the earlier designs. The computed results compared favourably well with experiments.

Inspec keywords: current density; wires (electric); modulation; electrodes; numerical analysis; electrostatic precipitators; corona; separation

Other keywords: electrostatic separation processing; computational technique; spatial distribution; numerical analysis; corona discharge; modulation; movable auxiliary wire; grounded plate; ionising wire; charge simulation method; current density; nonionising cylinder; trielectrode system; electric field

Subjects: Other numerical methods; Gaseous insulation, breakdown and discharges; Electrostatic devices; Wires and cables

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 1. Moore, A.D.: ‘Electrostatics and its applications’ (Wiley, New York, 1973).
    5. 5)
    6. 6)
      • 11. Dumitran, L., Badicu, L., Plopeanu, M., Dăscălescu, L.: ‘Efficiency of dual wire-cylinder electrodes used in electrostatic separators’, Rev. Roum. Sci. Tech., Électrotech. Énerg., 2010, 55, (2), pp. 171180.
    7. 7)
      • 14. Parker, K.R.: ‘Electrostatic precipitation’ (Chapman & Hall, New York, 1997).
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 12. Dumitran, L., Atten, P., Notingher, P.V., Dascalescu, L.: ‘2-D corona field computation in configurations with ionising and non-ionising electrodes’, J. Electrost., 2005, 64, (3), pp. 176186.
    15. 15)
      • 22. Peek, F.: ‘Ionization phenomena in high voltage engineering’ (McGraw-Hill, New York, 1929).
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 3. Hughes, J.: ‘Electrostatic particle charging’ (Wiley, New York, 1997).
    20. 20)
    21. 21)
      • 2. Chang, J.S., Kelly, A.J., Crowley, J.M.: ‘Handbook of electrostatic processes’ (Dekker, New York, 1995).
    22. 22)
    23. 23)
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2013.0205
Loading

Related content

content/journals/10.1049/iet-smt.2013.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading