© The Institution of Engineering and Technology
Triaxial MEMS vector field measurement system with triaxial MEMS sensors, such as accelerometer and magnetometer, is typically used to acquire navigation information in strapdown inertial navigation system (SINS). The navigation accuracy of the body is directly affected by the measurement accuracy of the measurement system. This study presents a twostep calibration algorithm for the triaxial MEMS vector field measurement system based on a detailed analysis of the measurement system error model. In the calibration procedure of this method, the first step is to calibrate the triaxial vector sensor error, including bias, scale factors and nonorthogonality using the ellipsoid fitting method; the second step is to calibrate the misalignment between the orthogonal sensor frame and the system body frame using the fourposition method. Furthermore, the mathematical analysis of fourposition method calibration error is done to study on the factors influencing the misalignment calibration accuracy, numerical simulation and experiments, which are performed for validating the analysis. A series of calibration experiments on a triaxial MEMS accelerometer in the measurement system show signiﬁcant enhancement of the accuracy of three components measurement data in the system body frame.
References


1)

11. Qingde, L., Griffiths, J.G.: ‘Least squares ellipsoid specific fitting’. Proc. Geometric Modeling and Processing, 2004, 2004, pp. 335–340.

2)

12. Taylor, J.R.: ‘An introduction to error analysis: the study of uncertainties in physical measurements’ (University Science Books, Sausalito, CA, 1997), pp. 55–154.

3)

6. Syed, Z.F., Aggarwal, P., Goodall, C., Niu, X., ElSheimy, N.: ‘A new multiposition calibration method for MEMS inertial navigation systems’, Meas. Sci. Technol., 2007, 18, p. 1897 (doi: 10.1088/09570233/18/7/016).

4)

8. Parvis, M., Ferraris, F.: ‘Procedure for effortless infield calibration of threeaxial rate gyro and accelerometers’, Sens. Mater., 1995, 7, pp. 311–330.

5)

1. Fong, W.T., Ong, S.K., Nee, A.Y.C.: ‘Methods for infield user calibration of an inertial measurement unit without external equipment’, Meas. Sci. Technol., 2008, 19, p. 085202 (doi: 10.1088/09570233/19/8/085202).

6)

3. Včelák, J., Ripka, P., Platil, A., Kubík, J., Kašpar, P.: ‘Errors of AMR compass and methods of their compensation’, Sens. Actuators A, 2006, 129, pp. 53–57 (doi: 10.1016/j.sna.2005.09.048).

7)

5. Vasconcelos, J.F., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: ‘Geometric approach to strapdown magnetometer calibration in sensor frame’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, pp. 1293–1306 (doi: 10.1109/TAES.2011.5751259).

8)

10. Xiang, L., Zhi, L.: ‘A new calibration method for triaxial field sensors in strapdown navigation systems’, Meas. Sci. Technol., 2012, 23, p. 105105 (doi: 10.1088/09570233/23/10/105105).

9)

9. Bonnet, S., Bassompierre, C., Godin, C., Lesecq, S., Barraud, A.: ‘Calibration methods for inertial and magnetic sensors’, Sens. Actuators A, 2009, 156, pp. 302–311 (doi: 10.1016/j.sna.2009.10.008).

10)

7. Won, S.h.P., Golnaraghi, F.: ‘A triaxial accelerometer calibration method using a mathematical model’, IEEE Trans. Instrum. Meas., 2010, 59, pp. 2144–2153 (doi: 10.1109/TIM.2009.2031849).

11)

4. Renaudin, V., Afzal, M.H., Lachapelle, G.: ‘New method for magnetometers based orientation estimation’. Position Location and Navigation Symp. (PLANS), 2010 IEEE/ION, 2010, pp. 348–356.

12)

2. Ying Kun, P., Golnaraghi, M.F.: ‘A vectorbased gyrofree inertial navigation system by integrating existing accelerometer network in a passenger vehicle’. Position Location and Navigation Symp., 2004. PLANS 2004, 2004, pp. 234–242.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietsmt.2013.0202
Related content
content/journals/10.1049/ietsmt.2013.0202
pub_keyword,iet_inspecKeyword,pub_concept
6
6