Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Pilot study: electrical impedance based tissue classification using support vector machine classifier

Tissue classification using computer aided diagnosis can help automated decision making to aid clinical diagnosis. Classification of breast tissue based on spectral features of impedance loci has frequently been done to classify malignant tissue with further requirement of more complex classification methodologies needed to improve the characterisation. In current study, tissue classification is done using in vivo electrical impedance data of 18 human subjects, from four quadrants of breast, palm, nail, arm, bicep and classified using algorithms involving machine learning methodologies, specifically support vector machines (SVMs) that are supervised learning models. They consist of learning algorithms based on the principal of structural risk minimisation. Two methodologies of SVM have been used in this study: with data binning and data pruning and without data binning and data pruning. Data binning and data pruning have improved the sensitivity of the SVM from 76.76 to 89.23%, but the specificity has decreased from 76.23 to 74.15%. This is a pilot study towards testing the reliability of the developed electrical impedance measuring system and developing a data mining-based decision making system into an electrical impedance spectroscopy system, to help users (physicians) with tissue classification leading to reliable objective decision making.

References

    1. 1)
      • 16. Cole, K.S.: ‘Membranes, ions and impulses: a chapter of classical biophysics’ (University of California Press, Berkley, CA, 1968), pp. 6102.
    2. 2)
      • 34. Available at http://www.cbcrp.org/publications/papers/BCinCA/page_08.php, accessed April 2013.
    3. 3)
      • 5. Foster, K.R., Schwan, H.: ‘Dielectric properties of tissues and biological materials: a critical review’, Crit. Rev. Biomed. Eng., 1989, 17, (I), pp. 25104.
    4. 4)
      • 14. Liu, N., Saulnier, G.J., Newell, J.C., Isaacson, D., Kao, J.: ‘ACT4: a high precision, multi frequency electrical impedance tomography’. Proc. Sixth Conf. Biomedical Applications, University College London, London, UK, 22–24 June 2005.
    5. 5)
      • 13. Latge, C.K., Souza, M.N.: ‘Study of the electrical impedance scanning’. Proc. 23rd EMBS Int. Conf., 2001, pp. 32623264.
    6. 6)
      • 32. [Online] Available at http://www.zhinst.com/products/hf2is, accessed April 2013.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 40. Clarkson, P., Moreno, P.J.: ‘On the use of support vector machines for phonetic classification’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 1999, vol. 2, pp. 585588.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 38. Hsu, C., Chang, C., Lin, C.: ‘A practical guide to support vector classification’, National Taiwan University, 2010.
    17. 17)
      • 1. Fricke, H., Morse, S.: ‘The electric capacity of tumors in the breast’, J Cancer Res., 1926, 16, pp. 340376.
    18. 18)
    19. 19)
    20. 20)
      • 31. [Online] Available at http://www.vermed.com/ecg-ems, accessed April 2013.
    21. 21)
      • 22. Vapnik, V.N.: ‘The nature of statistical learning theory’ (Springer, Berlin, 2000).
    22. 22)
      • 8. Assenheimer, M., Laver-Moskovitz, O., Malonek, D., et al: ‘The T-SCANTM technology: electrical impedance as a diagnostic tool for breast cancer detection’, Physiol. Meas., 2000, 22, pp. 18.
    23. 23)
      • 9. Transcan T-Scan 2000 Gets Panel Nod As Mammography Adjunct’, 1998, The Gary Sheet, 24, pp. 56.
    24. 24)
      • 15. Tyna, A.H., Sian, E.: ‘Technology review: the use of electrical impedance scanning in the detection of breast cancer’, Breast Cancer Res., 2004, 6, (2), pp. 6974.
    25. 25)
    26. 26)
      • 4. Mitsuyama, N., Morimoto, T., Kinouchi, Y., et al: ‘In vivo measurements of electrical bio-impedance of breast tumors’, Nippon Geka Gakkai Zasshi, 1988, 89, pp. 251255.
    27. 27)
    28. 28)
    29. 29)
      • 36. Dheeba, J., Tamil, S. S.: ‘Classification of malignant and benign microcalcification using SVM classifier’. Proc. ICETECT, 2011, pp. 686690.
    30. 30)
      • 25. Gur, D., Zheng, B., Lederman, D., Dhurjaty, S., Sumkin, J., Zuley, M.: ‘A support vector machine designed to identify breasts at high risk using multi-probe generated REIS signals: a preliminary assessment’. Proc. SPIE, 2010, 7627, pp. 76271B76271B–10.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 7. Scholz, B., Anderson, R.: ‘On electrical impedance scanning – principles and simulations’, Electromedia, 2000, 68, pp. 3544.
    35. 35)
    36. 36)
      • 35. Available at http://www.pressureprofile.com/products-fingertps, accessed April 2013.
    37. 37)
      • 28. Polk, C., Postow, E(Eds.): ‘CRC handbook of biological effects of electromagnetic fields’ (CRC Press, Boca Raton, FL, 1986), pp. 2796.
    38. 38)
    39. 39)
      • 12. Diebold, T., Jacobi, V., Scholz, B., et al: ‘Value of electrical impedance scanning (EIS) in the evaluation of BI-RADSTM III/IV/V-lesions’, Technol. Cancer Res. Treat., 2005, 4, pp. 9397.
    40. 40)
      • 26. Daliri, M.R.: ‘Combining extreme learning machines using support vector machines for breast tissue classification’, Comput. Meth. Biomech. Biomed. Eng., 2013. DOI: 10.1080/10255842.2013.789100.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2013.0087
Loading

Related content

content/journals/10.1049/iet-smt.2013.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address