Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Decision criterion based on sensitivity analysis to solve microwave heating in a single-mode cavity

This study presents advances in microwave heating simulations in a single-mode rectangular cavity via numerical method. The main contribution of this work is to propose a new decision criterion that provides the instant when the electric field must be recalculated when solving the thermal–electromagnetic problem inside the cavity. In most cases, the decision criteria found in the literature are empirically based on the variation of the loss factor. In this work, it is shown that the authors may introduce significant errors in the results and/or increase the simulation time. Here, the decision criterion is based on sensitivity analysis techniques that evaluate the derivative of the electric field with respect to the complex permittivity. Numerical results show that the new decision criterion works well for different load conditions and can be easily implemented with a hybrid analytical-finite element method.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 10. Tran, H.K.: ‘Numerical simulation of microwave heating of a target with temperature dependent electrical properties in a single mode cavity’. PhD thesis, The State University of New Jersey, Newark, EUA, 2004.
    11. 11)
    12. 12)
      • 13. Nikolova, N.K., Zhu, J., Li, D., Bakr, M.H., Bandler, J.W.: ‘Sensitivity analysis of network parameters with electromagnetic frequency-domain simulators’, IEEE Trans. Microw. Theory Tech., 2006, 54, (2), pp. 670681 (doi: 10.1109/TMTT.2005.862663).
    13. 13)
      • 2. Hile, C.V., Kriegsmann, G.A.: ‘A hybrid numerical method for loaded highly resonant single mode cavities’, J. Comput. Phys., 1998, 142, (2), pp. 506520 (doi: 10.1006/jcph.1998.5951).
    14. 14)
      • 10. Tran, H.K.: ‘Numerical simulation of microwave heating of a target with temperature dependent electrical properties in a single mode cavity’. PhD thesis, The State University of New Jersey, Newark, EUA, 2004.
    15. 15)
      • 4. Knoerzer, K., Regier, M., Schubert, H.: ‘Microwave heating: a new approach of simulation and validation’, Chem. Eng. Technol., 2006, 29, (7), pp. 796801 (doi: 10.1002/ceat.200600038).
    16. 16)
      • 5. Zhang, H., Datta, A.K.: ‘Coupled electromagnetic and thermal modeling of microwave oven heating of foods’, J. Microw. Power Electromagn. Energy, 2000, 35, (2), pp. 7185.
    17. 17)
      • 7. Braunstein, J., Connor, K., Salon, S., Libelo, L.: ‘Investigation of microwave heating with time varying material properties’, IEEE Trans. Magn., 1999, 33, (3), pp. 18131816 (doi: 10.1109/20.767384).
    18. 18)
      • 8. Zhao, H., Turner, I.W.: ‘An analysis of the finite-difference time-domain method for modeling the microwave heating of dielectric materials within a three-dimensional cavity system’, J. Microw. Power Electromagn. Energy, 1996, 31, (4), pp. 199214.
    19. 19)
      • 14. Li, D., Zhu, J., Nikolova, N.K., Bakr, M.H., Bandler, J.W.: ‘Electromagnetic optimization using sensitivity analysis in the frequency domain’, IET Microw. Antennas Propag., 2007, 1, (4), pp. 852859 (doi: 10.1049/iet-map:20060303).
    20. 20)
      • 18. von Hippel, A.R.: ‘Dielectric materials and applications’ (MIT Press, Cambridge, MA, 1954).
    21. 21)
      • 1. Metaxas, A.C.: ‘Rapid feasibility test using a TE10n variable aperture resonant applicator’, J. Microw. Power Electromagn. Energy, 1990, 2, (1), pp. 1624.
    22. 22)
      • 6. Rabello, A.A., Silva, E.J., Sadanha, R.R., Vollaire, C., Nicolas, A.: ‘Adaptive time-stepping analysis of nonlinear microwave heating’, IEEE Trans. Magn., 2005, 41, pp. 15841587 (doi: 10.1109/TMAG.2005.845034).
    23. 23)
      • 15. Collin, R.E.: ‘Field theory of guided waves’ (IEEE Press, Piscataway, NJ, 1991).
    24. 24)
      • 16. Jin, J.: ‘The finite element method in electromagnetics’ (John Wiley and Sons, New York, NY, 1993).
    25. 25)
      • 19. Rotaru, M.D., Sykulski, J.K.: ‘Electromagnetic design of dual resonant structures for improved sensitivity of terahertz label free bio-sensing’. Proc. Conf. Electromagnetic Field Computation (CEFC 2010), Chicago, EUA, May 2010.
    26. 26)
      • 12. Akel, H., Webb, J.P.: ‘Design sensitivities for scattering-matrix calculation with tetrahedral edge elements’, IEEE Trans. Magn., 2000, 36, (4), pp. 10431046 (doi: 10.1109/20.877620).
    27. 27)
      • 11. Clemens, M., Gjonaj, E., Pinder, P., Weiland, T.: ‘Numerical simulation of coupled transient thermal and electromagnetic fields with finite integration method’, IEEE Trans. Magn., 2000, 36, (4), pp. 14481452 (doi: 10.1109/20.877567).
    28. 28)
      • 9. Zhao, H., Turner, I.W.: ‘The use of a coupled computational model for studying the microwave heating of wood’, Appl. Math. Model., 2000, 24, pp. 183197 (doi: 10.1016/S0307-904X(99)00034-7).
    29. 29)
      • 3. Oliveira, D.B., Silva, E.J.: ‘Hybrid analytical-FEM method for microwave heating analysis in a single mode cavity’, IEEE Trans. Magn., 2010, 46, pp. 27672770 (doi: 10.1109/TMAG.2010.2044152).
    30. 30)
      • 17. Bergheau, J.M., Fortunier, R.: ‘Finite element simulation of heat transfer’ (John Wiley & Sons, ISTE Ltd, 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2013.0086
Loading

Related content

content/journals/10.1049/iet-smt.2013.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address