Design, development and evaluation of optical motion-tracking system based on active white light markers

Design, development and evaluation of optical motion-tracking system based on active white light markers

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The precise measurement and analysis of human movements is an essential step in biomechanical research used in sports or medicine. Measurement systems used for motion tracking should be non-invasive, safe to use, widely customisable and cost-efficient. In this study, complete design, development and evaluation of a high-speed optical motion tracking and analysis system is described. The system aims to analyse movements for sports and medical applications. The novelty of the proposed system is its design, which is based on visible light light-emitting diode (LED) markers, rather than infrared markers that are commonly used, and a pair of high-speed digital cameras. Calibration procedures and a super-resolution marker model are introduced, ensuring sub-pixel marker centre detection which results in higher three-dimensional reconstruction accuracy. Evaluation of the system included an accuracy test of the proposed system on static and moving objects with known dimensions, followed by analysis of kinematic data obtained in dynamic conditions while measuring human gait. The evaluation results are presented, and conclusions about system performance with possible improvements are discussed.


    1. 1)
      • 1. Medved, V.: ‘Measurement of human locomotion’ (CRC Press, 2001).
    2. 2)
      • 2. Alard, P., Capozzo, A., Lundberg, A., Vaughan, C.L.: ‘Three-dimensional analysis of human locomotion’ (John Wiley & Sons, 1997).
    3. 3)
      • 3. Kolahi, A., Hoviattalab, M., Rezaeian, T., Alizadeh, M., Bostan, M., Mokhtarzadeh, H.: ‘Design of a marker-based human motion tracking system’, Biomed. Signal Proces., 2007, 2, (1), pp. 5967 (doi: 10.1016/j.bspc.2007.02.001).
    4. 4)
      • 4. Rash, G.S., Belliappa, P.P., Wachowiak, M.P., Somia, N.N., Gupta, A.: ‘A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension’, J. Biomech., 1999, 32, (12), pp. 13371341 (doi: 10.1016/S0021-9290(99)00140-2).
    5. 5)
      • 5. Castro, J.L., Medina-Carnicer, R., Galisteo, A.M.: ‘Design and evaluation of a new three dimensional motion capture system based on video’, Gait Posture, 2006, 24, (1), pp. 126129 (doi: 10.1016/j.gaitpost.2005.08.001).
    6. 6)
      • 6. Moeslund, T.B., Hilton, A., Krüger, V.: ‘A survey of advances in vision-based human motion capture and analysis’, Comput. Vis. Image Underst. – Special Issue on Modeling People: Vision-based Understanding of a Person's Shape, Appearance, Movement, and Behaviour, 2006, 104, (2), pp. 90126.
    7. 7)
      • 7. Moeslund, T.B., Granum, E.: ‘A survey of computer vision-based human motion capture’, Comput. Vis. Image Underst., 2001, 81, (3), pp. 231268 (doi: 10.1006/cviu.2000.0897).
    8. 8)
      • 8. Windolf, M., Götzen, N., Morlock, M.: ‘Systematic accuracy and precision analysis of video motion capturing systems-exemplified on the Vicon-460 system’, J. Biomech., 2008, 41, (12), pp. 27762780 (doi: 10.1016/j.jbiomech.2008.06.024).
    9. 9)
      • 9. Maletsky, L.P., Sun, J., Morton, N.A.: ‘Accuracy of an optical active-marker system to track the relative motion of rigid bodies’, J. Biomech., 2007, 40, (3), pp. 682685 (doi: 10.1016/j.jbiomech.2006.01.017).
    10. 10)
      • 10. Shultz, R., Kedgley, A.E., Jenkyn, T.R.: ‘Quantifying skin motion artefact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy’, Gait Posture, 2011, 34, (1), pp. 4448 (doi: 10.1016/j.gaitpost.2011.03.008).
    11. 11)
      • 11. Andersen, M.S., Benoit, D.L., Damsgaard, M., Ramsey, D.K., Rasmussen, J.: ‘Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics’, J. Biomech., 2010, 43, (2), pp. 268273 (doi: 10.1016/j.jbiomech.2009.08.034).
    12. 12)
      • 12. Fischer, K.J., Manson, T.T., Pfaeffle, H.J., Tomaino, M.M., Woo, S.L.: ‘A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data’, J. Biomech., 2001, 34, (3), pp. 377383 (doi: 10.1016/S0021-9290(00)00195-0).
    13. 13)
      • 13. Gorton, G.E., Hebert, D.A., Gannotti, M.E.: ‘Assessment of the kinematic variability among 12 motion analysis laboratories’, Gait Posture, 2009, 29, (3), pp. 398402 (doi: 10.1016/j.gaitpost.2008.10.060).
    14. 14)
      • 14. Aggarwal, J.K., Cai, Q.: ‘Human motion analysis: A review’, Comput. Vis. Image Underst., 1999, 73, (3), pp. 428440 (doi: 10.1006/cviu.1998.0744).
    15. 15)
      • 15. McGinley, J.L., Baker, R., Wolfe, R., Morris, M.E.: ‘The reliability of three-dimensional kinematic gait measurements: a systematic review’, Gait Posture, 2009, 29, (3), pp. 360369 (doi: 10.1016/j.gaitpost.2008.09.003).
    16. 16)
      • 16. Clarke, T.A., Fryer, J.G.: ‘The development of camera calibration methods and models’, Photogramm. Rec., 1998, 16, (91), pp. 5166 (doi: 10.1111/0031-868X.00113).
    17. 17)
      • 17. Miyagawa, I., Arai, H., Koike, H.: ‘Simple camera calibration from a single image using five points on two orthogonal 1-D objects’, IEEE Trans. Image Process., 2010, 19, (6), pp. 15281538 (doi: 10.1109/TIP.2010.2042118).
    18. 18)
      • 18. Tsai, R.Y.: ‘A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses’, IEEE T. Robotic. Autom., 1987, 3, (4), pp. 323344 (doi: 10.1109/JRA.1987.1087109).
    19. 19)
      • 19. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, 2003).
    20. 20)
      • 20. Heikkilä, J.: ‘Geometric camera calibration using circular control points’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (10), pp. 10661077 (doi: 10.1109/34.879788).
    21. 21)
      • 21. Zollner, H., Sablatnig, R.: ‘Comparison of methods for geometric camera calibration using planar calibration targets’. Proc. 28th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), Hagenberg, Austria, June 2004, pp. 237244.
    22. 22)
      • 22. Zhang, Z.: ‘Flexible camera calibration by viewing a plane from unknown orientations’. Proc. Seventh IEEE Int. Conf. on Computer Vision, Corfu, Greece, September 1999, pp. 666673.
    23. 23)
      • 23. Ling, D., Hsu, H.Y., Lin, G.C.I., Lee, S.H.: ‘Enhanced image-based coordinate measurement using a super-resolution method’, Robot. Comput.-Integr. Manuf., 2005, 21, (6), pp. 579588 (doi: 10.1016/j.rcim.2004.12.004).
    24. 24)
      • 24. Lyvers, E.P., Mitchell, O.R., Akey, M.L., Reeves, A.P.: ‘Subpixel measurements using a moment-based edge operator’, IEEE Trans. Pattern Anal. Mach. Intell, 1989, 11, (12), pp. 12931309 (doi: 10.1109/34.41367).
    25. 25)
      • 25. Horney, R., Svalbe, I.D., Wells, P.: ‘Isotropic subpixel measurement of circular objects’. Proc. Seventh Int. Conf. on Digital Image Computing: Techniques and Applications, Sidney, Australia, December 2003, pp. 529538.
    26. 26)
      • 26. Mairesse, F., Sliwa, T., Binczak, S., Voisin, I.: ‘Subpixel determination of imperfect circles characteristics’, Pattern Recognit., 2008, 41, (1), pp. 250271 (doi: 10.1016/j.patcog.2007.03.010).
    27. 27)
      • 27. Marxen, M., Sullivan, P.E., Loewen, M.R., Jahne, B.: ‘Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry’, Exp. Fluids, 2000, 29, (2), pp. 145153 (doi: 10.1007/s003489900085).
    28. 28)
      • 28. Hermosilla, T., Bermejo, E., Balaguer, A., Ruiz, L.A.: ‘Non-linear fourth-order image interpolation for subpixel edge detection and localization’, Image Vis. Comput., 2008, 26, (9), pp. 12401248 (doi: 10.1016/j.imavis.2008.02.012).
    29. 29)
      • 29. Trujillo-Pino, A., Krissian, K., Alemán-Flores, M., Santana-Cedrés, D.: ‘Accurate subpixel edge location based on partial area effect’, Image Vis. Comput., 2013, 31, (1), pp. 7290. (doi: 10.1016/j.imavis.2012.10.005).
    30. 30)
      • 30. Abdel-Aziz, Y.I., Karara, H.M.: ‘Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry’. Proc. Symp. Close-Range Photogrammetry, Urbana, Illinois, USA, 1971, pp. 118.
    31. 31)
      • 31. http//, accessed October 2012.
    32. 32)
      • 32. Shapiro, G., Stockman, G.C.: ‘Computer vision’ (Prentice-Hall, 2001).
    33. 33)
      • 33. Willert, C.E., Gharib, M.: ‘Digital particle image velocimetry’, Exp. Fluids, 1991, 10, (4), pp. 181193 (doi: 10.1007/BF00190388).
    34. 34)
      • 34. Guo, H.: ‘A simple algorithm for fitting a Gaussian function’, IEEE Signal Proc. Mag., 2011, 28, (5), pp. 134137 (doi: 10.1109/MSP.2011.941846).
    35. 35)
      • 35. Winter, D.A.: ‘Biomechanics and motor control of human movement’ (John Wiley & Sons, 2004).
    36. 36)
      • 36. Holden, J.P., Chou, G., Stanhope, S.J.: ‘Changes in knee joint function over a wide range of walking speeds’, Clin. Biomech., 1997, 12, (6), pp. 375382 (doi: 10.1016/S0268-0033(97)00020-X).

Related content

This is a required field
Please enter a valid email address