Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Study of the effect of angle errors in conical ultrasonic sensors

Many ultrasonic sensors intended for non-destructive testing include a plastic or metal element, known as buffer rod, between the ultrasonic transducer and the material under analysis. Buffer rods are often terminated in the form of a conical tip for ultrasonic inspection of liquid-like substances. The conical tip is carefully shaped in a 45° angle to favour the in phase reception of all the components of the ultrasonic wave reflected at the buffer tip, obtaining thus a maximum amplitude measurement signal. The effect of the buffer rod cone angle on measurement signals is studied in this work. A straightforward approximate formula for the effect of the error angle on measurement signal amplitude is used. Simulations are performed using a two-dimensional finite differences tool. Measurements are conducted with the same operating conditions and buffer rod materials and dimensions as those defined for both approximate formula evaluation and simulations. Thus, a comparison of the approximate formula, simulation and measurement results are established. Furthermore, the significance of some parameters such as ultrasonic transducer operating frequency and diameter, and buffer rod material are also analysed. The obtained results show that significant loss of the measurement signal amplitude is found only for cone error angles beyond the range of usual machining errors.

References

    1. 1)
      • 12. Kobayashi, M., Jen, C.K., Bussiere, J.F., Wu, K.T.: ‘High-temperature integrated and flexible ultrasonic transducers for nondestructive testing’, NDT E Int., 2009, 42, (2), pp. 157161 (doi: 10.1016/j.ndteint.2008.11.003).
    2. 2)
      • 10. Franca, D.R., Jen, C.-K., Ono, Y.: ‘Contrapropagating ultrasonic flowmeter using clad buffer rods for high temperature measurements’, J. Dyn. Syst. Meas. Control, 2011, 133, (1), pp. 17 (doi: 10.1115/1.4002717).
    3. 3)
      • 7. Jen, C.K., Cao, B., Nguyen, K.T., Loong, C.A., Legoux, J.G.: ‘On-line ultrasonic monitoring of a die-casting process using buffer rods’, Ultrasonics, 1997, 35, (5), pp. 335344 (doi: 10.1016/S0041-624X(97)00015-2).
    4. 4)
      • 25. García-Álvarez, J., García-Hernández, M.J., Novoa-Díaz, D.F., Turó Peroy, A., Chávez Domínguez, J.A., Salazar Soler, J.: ‘Resizing buffer rods for ultrasound testing of food products with acoustic noise considerations’, Ultrasonics, 2013, 53, (1), pp. 294301 (doi: 10.1016/j.ultras.2012.06.013).
    5. 5)
      • 20. García-Álvarez, J., García-Hernández, M.J., Chávez, J.A., Turó, A., Salazar, J.: ‘Effect of angle errors in conical tip buffer rods’. Book of abstracts of the IEEE Int. Ultrasonics Symp., 2011.
    6. 6)
      • 17. Fox, P., Smith, P.P., Sahi, S.: ‘Ultrasound measurements to monitor the specific gravity of food batters’, J. Food Eng., 2004, 65, (3), pp. 317324 (doi: 10.1016/j.jfoodeng.2004.01.028).
    7. 7)
      • 16. Salazar, J., Turo, A., Chavez, J.A., Garcia, M.J.: ‘Ultrasonic inspection of batters for on-line process monitoring’, Ultrasonics, 2004, 42, (1–9), pp. 155159 (doi: 10.1016/j.ultras.2004.02.017).
    8. 8)
      • 8. Ono, Y., Cheng-Kuei, J., Moisan, J.F., Chun-Yi, S.: ‘Aluminum buffer rods for ultrasonic monitoring at elevated temperatures’, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2005, 52, (6), pp. 10421047.
    9. 9)
      • 3. Aitomäki, Y., Löfqvist, T.: ‘Material property estimates from ultrasound attenuation in fibre suspensions’, Ultrasonics, 2009, 49, (4–5), pp. 432437 (doi: 10.1016/j.ultras.2008.11.005).
    10. 10)
      • 23. Hoppe, N., Puttmer, A., Hauptmann, P.: ‘Optimization of buffer rod geometry for ultrasonic sensors with reference path’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50, (2), pp. 170178 (doi: 10.1109/TUFFC.2003.1182120).
    11. 11)
      • 19. Gómez, M., Oliete, B., García-Álvarez, J., Ronda, F., Salazar, J.: ‘Characterization of cake batters by ultrasound measurements’, J. Food Eng., 2008, 89, (4), pp. 408413 (doi: 10.1016/j.jfoodeng.2008.05.024).
    12. 12)
      • 9. Viumdal, H., Mylvaganam, S., Kuo-Ting, W.: ‘Dependency of signal to noise ratio on transducer diameter and buffer diameter in guided wave time domain reflectometry’. 2011 IEEE Int. Ultrasonics Symp. (IUS), 2011.
    13. 13)
      • 6. Chung, C.-W., Popovics, J.S., Struble, L.J.: ‘Using ultrasonic wave reflection to measure solution properties’, Ultrason. Sonochem., 2010, 17, (1), pp. 266272 (doi: 10.1016/j.ultsonch.2009.07.004).
    14. 14)
      • 11. Kažys, R., Rekuvienė , R.: ‘Viscosity and density measurement methods for polymer melts’, Ultragarsas (Ultrasound), 2011, 66, (4), pp. 2025.
    15. 15)
      • 15. Schickert, M.: ‘Ultrasonic Nde of concrete’. Proc. IEEE Ultrasonics Symp. 2002, 2002, vol. 1, pp. 739748.
    16. 16)
      • 22. Wave2000pro User Guide & Reference Manual’, (CyberLogic, Inc., 1997–2000).
    17. 17)
      • 1. Coupland, J.N.: ‘Low intensity ultrasound’, Food Res. Int., 2004, 37, (6), pp. 537543 (doi: 10.1016/j.foodres.2004.01.011).
    18. 18)
      • 18. Fox, P.D., Smith, P.P., Sahi, S.S.: ‘Buffer rod design for measurement of specific gravity in the processing of industrial food batters’. Proc. IEEE Ultrasonics Symp. 2002, 2002, vol. 1, pp. 679682.
    19. 19)
      • 4. McClements, D.J., Fairley, P.: ‘Ultrasonic pulse echo reflectometer’, Ultrasonics, 1991, 29, (1), pp. 5862 (doi: 10.1016/0041-624X(91)90174-7).
    20. 20)
      • 2. Adamowski, J.C., Buiochi, F., Higuti, R.T.: ‘Ultrasonic material characterization using large-aperture pvdf receivers’, Ultrasonics, 2010, 50, (2), pp. 110115 (doi: 10.1016/j.ultras.2009.09.018).
    21. 21)
      • 14. Nikolovski, J.P., Royer, D.: ‘Local and selective detection of acoustic waves at the surface of a material’. Proc. IEEE Ultrasonics Symp. 1997, 1997, vol. 1, pp. 699703.
    22. 22)
      • 5. Adamowski, J.C., Buiochi, F., Simon, C., Silva, E.C.N., Sigelmann, R.A.: ‘Ultrasonic measurement of density of liquids’, J. Acoust. Soc. Am., 1995, 97, (1), pp. 354361 (doi: 10.1121/1.412320).
    23. 23)
      • 24. Garcia-Alvarez, J., Yanez, Y., Prego, J.L., et al: ‘Noise level analysis in buffer rod geometries for ultrasonic sensors’, Ultrasonics, 2006, 44, (Suppl. 1), pp. e1093e1100 (doi: 10.1016/j.ultras.2006.05.106).
    24. 24)
      • 13. Novoa-Díaz, D., García-Alvarez, J., Chávez, J.A., Turo, A., García-Hernández, M.J., Salazar, J.: ‘Comparison of methods for measuring ultrasonic velocity variations during ageing or fermentation of food materials’, IET Sci. Meas. Technol., 2012, 6, (4), pp. 205212 (doi: 10.1049/iet-smt.2011.0178).
    25. 25)
      • 21. Ihara, I., Burhan, D., Aso, H., Kamado, S., Kojima, Y.: ‘Ultrasonic in-line sensors for inclusion detection in liquid metals’. Proc. IEEE Ultrasonics Symp. 2002, 2002, vol. 1, pp. 811814.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2012.0141
Loading

Related content

content/journals/10.1049/iet-smt.2012.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address