access icon free Control of a class of non-linear uncertain chaotic systems via an optimal Type-2 fuzzy proportional integral derivative controller

This study deals with the problem of controlling a class of uncertain non-linear systems in the presence of external disturbances. To achieve this goal, a novel optimal Type-2 fuzzy proportional integral derivative (OT2FPID) controller is introduced. In the proposed controller, a novel heuristic algorithm namely particle swarm optimisation with random inertia weight (RNW–PSO) is employed. To achieve an optimal performance, the parameters of the proposed controller as well as the input and output membership functions are optimised simultaneously by RNW–PSO. To evaluate the performance of the proposed controller, the results are compared with those obtained by optimal H adaptive proportional integral derivative controller, which is the latest research in the problem in hand. Simulation results show the effectiveness of the OT2FPID controller.

Inspec keywords: optimal control; particle swarm optimisation; uncertain systems; nonlinear control systems; chaos; fuzzy control; three-term control

Other keywords: random inertia weight; particle swarm optimisation; nonlinear uncertain chaotic systems; heuristic algorithm; optimal control; type-2 fuzzy control; proportional integral derivative control; uncertain nonlinear system

Subjects: Nonlinear control systems; Optimisation techniques; Fuzzy control; Optimal control

References

    1. 1)
      • 19. Karnik, N.N., Mendel, J.M.: ‘Centroid of a type-2 fuzzy set’, Inf. Sci., 2001, 132, pp. 195220.
    2. 2)
      • 11. John, R.: ‘Type 2 fuzzy sets: An appraisal of theory and applications’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 1998, 6, pp. 563576.
    3. 3)
      • 7. Piccirillo, V., Balthazar, J.M., Pontes, B.R., Felix, J.L.P.: ‘Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: part I: ideal energy source’, Nonlinear Dyn., 2009, 55, (1–2), pp. 139149.
    4. 4)
      • 18. Zadeh, L.A.: ‘The concept of a linguistic variable and its application to approximate reasoning-1’, Inf. Sci., 1975, 8, pp. 199249.
    5. 5)
      • 20. Mendel, J.M., Wu, D.: ‘Perceptual computing: aiding people in making subjective judgments’ (Wiley-IEEE Press, Hoboken, NJ, 2010).
    6. 6)
      • 1. Yang, T., Chua, L.: ‘Secure communication via chaotic parameter modulation’, IEEE Trans. Circuits Syst., 1996, 43, pp. 817819.
    7. 7)
      • 25. Zhang, L., Yu, H., Hu, S.: ‘A new approach to improve particle swarm optimization’. Proc. Int. Conf. Genetic and Evolutionary Computation, 2003, pp. 134139.
    8. 8)
      • 3. Aghababa, M.P., Aghababa, H.P.: ‘Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties’, Nonlinear Dyn., 2012, 67, pp. 26892701.
    9. 9)
      • 12. Liang, Q., Karnik, N., Mendel, J.: ‘Connection admission control in ATM networks using survey-based type 2 fuzzy logic systems’, IEEE Trans. Syst. Man Cybern., Part C, Cybern., 2000, 30, pp. 329339.
    10. 10)
      • 5. Zhang, R.X., Yang, S.P.: ‘Adaptive synchronization of fractional-order chaotic systems via a single driving variable’, Nonlinear Dyn., 2011, 66, pp. 831837.
    11. 11)
      • 21. Wu, D., Tan, W.W.: ‘Enhanced Karnik-Mendel algorithms’, IEEE Trans. Fuzzy Syst., 2009, 17, pp. 923934.
    12. 12)
      • 29. Khooban, M.H., Nazari Maryam Abadi, D., Alfi, A.: ‘Swarm optimization tuned Mamdani fuzzy controller for diabetes delayed model’, Turk. J. Elec. Eng. Comput. Sci., 2012, doi: 10.3906/elk-1202–21, accepted.
    13. 13)
      • 24. Modares, H., Alfi, A., Naghibi Sistani, M.B.: ‘Parameter estimation of bilinear systems based on an adaptive particle swarm optimization’, J. Eng. Appl. Artif. Intel., 2010, 23, pp. 11051111.
    14. 14)
      • 6. Yoo, W., Ji, D., Won, S.: ‘Synchronization of two different non-autonomous chaotic systems using fuzzy disturbance observer’, Phys. Lett. A, 2010, 374, pp. 13541361.
    15. 15)
      • 9. Ziegler, J.G., Nichols, N.B.: ‘Optimum settings for automatic controllers’, ASME Trans., 1942, 64, pp. 759768.
    16. 16)
      • 30. Palm, P.: ‘Robust control by fuzzy sliding mode’, Automatica, 1994, 30, pp. 14291437.
    17. 17)
      • 26. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. IEEE Conf. Evolutionary Computation, Singapore, 1998, pp. 6973.
    18. 18)
      • 27. Eberhart, R.C., Shi, Y.: ‘Tracking and optimizing dynamic systems with particle swarms’. Proc. IEEE Congr. Evolutionary Computation, Korea, 2001, pp. 9497.
    19. 19)
      • 10. Mendel, J.: ‘Uncertain rule-based fuzzy logic systems: introduction and new directions’ (Upper Saddle River, NJ, Prentice-Hall, 2001).
    20. 20)
      • 32. Chen, H.K.: ‘Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping’, J. Sound Vib., 2002, 255, pp. 719740.
    21. 21)
      • 15. Hagras, H.: ‘A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots’, IEEE Trans. Fuzzy Syst., 2004, 12, pp. 524539.
    22. 22)
      • 17. Wu, D., Tan, W.W.: ‘Genetic learning and performance evaluation of type-2 fuzzy logic controllers’, Eng. Appl. Artif. Intel., 2006, 19, (8), pp. 829841.
    23. 23)
      • 14. Alfi, A.: ‘Chaos suppression on a class of uncertain nonlinear chaotic systems using an optimal H adaptive PID controller’, Chaos Solitons Fract., 2012, 45, pp. 351357.
    24. 24)
      • 8. Knospe, C.: ‘PID control’, IEEE Control Syst. Mag., 2006, 26, pp. 3031.
    25. 25)
      • 16. Hagras, H.: ‘Type-2 FLCs: a new generation of fuzzy controllers’, IEEE Comput. Intel. Mag., 2007, 2, (1), pp. 3043.
    26. 26)
      • 13. Mendel, J., John, R.: ‘Type-2 fuzzy sets made simple’, IEEE Trans. Fuzzy Syst., 2002, 10, pp. 117127.
    27. 27)
      • 28. Li, H.X., Zhang, L., Cai, K.Y., Chen, G.: ‘An improved robust fuzzy-PID controller with optimal fuzzy reasoning’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2005, 35, pp. 12831294.
    28. 28)
      • 2. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R., Felix, J.L.P.: ‘Statements on chaos control designs, including a fractional order dynamical system, applied to a ‘MEMS’ comb-drive actuator’, Nonlinear Dyn., 2012, 69, pp. 18371857.
    29. 29)
      • 22. Alfi, A., Modares, H.: ‘System identification and control using adaptive particle swarm optimization’, J. Appl. Math. Model., 2011, 35, pp. 12101221.
    30. 30)
      • 33. Dooren, R.V.: ‘Comments on chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping’, J. Sound Vib., 2003, 268, pp. 632634.
    31. 31)
      • 34. Lei, Y., Xu, W., Zheng, H.: ‘Synchronization of two chaotic nonlinear gyros using active control’, Phys. Lett. A., 2005, 343, pp. 153158.
    32. 32)
      • 31. Kawaji, S., Maeda, T.: ‘Fuzzy servo control system for an inverted pendulum’. Proc. Int. Fuzzy Engineering Symp., 1991, pp. 812823.
    33. 33)
      • 4. Zeng, C., Yang, Q., Wang, J.: ‘Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci’, Nonlinear Dyn., 2011, 65, pp. 457466.
    34. 34)
      • 23. Modares, H., Alfi, A., Fateh, M.M.: ‘Parameter identification of chaotic dynamic systems through an improved particle swarm optimization’, Expert Syst. Appl., 2010, 37, pp. 37143720.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2012.0092
Loading

Related content

content/journals/10.1049/iet-smt.2012.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading