Residual doping concentration estimation in a separation by IMplanted OXygen film using current measurements

Residual doping concentration estimation in a separation by IMplanted OXygen film using current measurements

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In situ measurements of static characteristics for an ad-hoc silicon-on-insulator (SOI) device represent an important method for SOI technologies characterisation. The Separation by IMplanted OXygen (SIMOX) technique is based on oxygen ions implantation into Si-film. After annealing, an increased doping concentration was reported, because of the residual oxygen clusters within the film, giving rise to oxygen thermal donors. Therefore this study offers an original algorithm for doping concentration estimation in these SOI films. A specific device used for in situ electrical characterisation of SOI wafers is the pseudo-metal oxide semiconductor (MOS) transistor. In this study, the doping concentrations extraction is based on graphical solution of a non-linear equation and third-order derivative zeroing of the measured static characteristics. In this scope, experimental curves I DV G, in inversion and accumulation were experimentally measured for a pseudo-MOS transistor made in SIMOX technology. In this situation, the threshold and flat-band voltage are extracted, free of classical conventions. The extracted doping concentration in film is roughly 5.8 × 1015 cm− 3; also the conductivity is changed from p to n in film, as the literature predicted.


    1. 1)
      • 1. Cristoloveanu, S., , Sheng, S.L.: ‘Electrical characterization of silicon-on-insulator materials and devices’ (Kluwer Academic Publishers, New York, 1995, 1st edn.).
    2. 2)
      • 2. Ravariu, C., Babarada, F.: ‘Modeling and simulation of special shaped SOI materials for the nanodevices implementation’, Hindawi J. Nanomater., 2011, 2011, pp. 111.
    3. 3)
      • 3. Koo, J.Y., Jung, S.Y., Ryu, C.H., Lee, S.W., Lee, B.W.: ‘Identification of insulation defects in gas-insulated switchgear by chaotic analysis of partial discharge’, IET Sci. Meas. Technol., 2010, 4, (3), pp. 115124.
    4. 4)
      • 4. Anthony, C., Turnbull, R., Wei, X., Ward, M., Collins, S.: ‘Fabrication and quality factor control of a microelectromechanical system resonator with linear differential drive’, IET Sci. Meas. Technol., 2010, 4, (4), pp. 206213.
    5. 5)
      • 5. Popa, C.: ‘Improved linearity CMOS multifunctional structure for VLSI applications’, Rom. J. Inf. Sci. Technol., Rom. Acad., 2007, 10, (2), pp. 157165.
    6. 6)
      • 6. Mohanty, S., Ghosh, S.: ‘Artificial neural networks modelling of breakdown voltage of solid insulating materials in the presence of void’, IET Sci. Meas. Technol., 2010, 4, (5), pp. 278288.
    7. 7)
      • 7. Ravariu, C.: ‘The implementation methodology of the real effects in a NOI nanostructure aided by simulation and modeling’, Elsevier J. Simul. Model. Pract. Theory, 2010, 18, (9), pp. 12741285.
    8. 8)
      • 8. Valsalal, P., Usa, S., Udayakumar, K.: ‘Modelling of metal oxide arrester for very fast transients’, IET Sci. Meas. Technol., 2011, 5, (4), pp. 140146.
    9. 9)
      • 9. Celler, G.K., Cristoloveanu, S.: ‘SOI techniques’, J. Appl. Phys., 2003, 93, p. 4955.
    10. 10)
      • 10. Wei, X., Wu, A., Wang, X., et al: ‘Characterization and analysis of silicon on insulator fabricated by separation by implanted oxygen layer transfer’, J. Vac. Sci. Technol. B, 2010, 28, (163), pp. 16.
    11. 11)
      • 11. Rudenko, T., Kilchytska, V., Arshad, M.K.M., Raskin, J.-P., Nazarov, A., Flandre, D.: ‘On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods: Part I – effect of gate-voltage-dependent mobility’, IEEE Trans. Electron. Devices, 2011, 58, (12), pp. 41724180.
    12. 12)
      • 12. Dian-Tong, L., Ryssel, H.: ‘Improvement in electrical properties of SOI-SIMNI films by multiple-step implantation’, Cur. Appl. Phys. Elsevier, 2001, 1, (4–5), pp. 389391.
    13. 13)
      • 13. Hayama, K., Takakura, K., Ohyama, H., et al: ‘Analysis of 2-MeV electron-irradiation induced degradation in FD-SOI MOSFETs fabricated on ELTRAN and UNIBOND wafers’, IEEE Trans. Nucl. Sci., 2006, 53, (4), Part 1, pp. 19391944.
    14. 14)
      • 14. Nakajima, Y., Watanabe, Y., Hanajiri, T., Toyabe, T., Sugano, T.: ‘Correlation between high-density trap states and local stress near SOI/BOX interface in SIMOX wafers’. IEEE Semiconductor Device Research Symp. ISDRS, College Park, MD, December 2009, p. 114:12.
    15. 15)
      • 15. Cristian, R., Rusu, A.: ‘Experimental and theoretical proofs for the JFET work regime of the pseudo-MOS transistor’, Rev. Roum. Sci. Tech., Rom. Acad. J., 2011, (4), pp. 396406.
    16. 16)
      • 16. Ravariu, C., Rusu, A., Udrea, F., Ravariu, F.: ‘Simulation results of some diamond on insulator nano-MISFETs’, Diam. Relat. Mater., Elsevier J., 2006, 15, (4–8), pp. 777782.
    17. 17)
      • 17. Rusu, A.: ‘Non-linear electrical conduction in semiconductor structures’ (Bucharest House Publishing of the Romanian Academy, Romania, 2000).
    18. 18)
      • 18. Shinada, T., Okamoto, S., Kobayashi, T., Ohdomari, I.: ‘Enhancing semiconductor device performance using ordered dopant arrays’, Nature, 2005, 437, pp. 11281131.
    19. 19)
      • 19. Rusu, A.: ‘A theorem of the non-linear electric conduction’. Proc. IEEE Int. Conf. Semiconductors CAS, 1993, Sinaia, Romania, pp. 3134.
    20. 20)
      • 20. Cristoloveanu, S., Munteanu, D., Liu, M.S.T.: ‘A review of the pseudo-MOS transistor in SOI wafers: operation, parameter extraction, and applications’, IEEE Trans. Electron. Devices, 2000, 47, (5), pp. 10181027.
    21. 21)
      • 21. Cristian, R., Rusu, A.: ‘Arguments for the NOI nanotransistor affiliation to the FETs family’, Rom. J. Inf. Sci. Technol., Rom. Acad., 2011, 14, (3), pp. 203211.
    22. 22)
      • 22. Buchau, A., Rucker, W.M., De Boer, C.V., Klaas, N.: ‘Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface’, IET Sci. Meas. Technol., 2010, 4, (6), pp. 283310.
    23. 23)
      • 23. Alapati, S., Thomas, M.J.: ‘Influence of nano-fillers on electrical treeing in epoxy insulation’, IET Sci. Meas. Technol., 2012, 5, (1), pp. 2128.
    24. 24)
      • 24. Mirzavand, R., Abdipour, A., Schilders, W.H.A., Moradi, G., Movahhedi, M.: ‘Locally one-dimensional finite-difference time-domain scheme for the full-wave semiconductor device analysis’, IET Sci. Meas. Technol., 2012, 6, (2), pp. 7884.
    25. 25)
      • 25. Ravariu, C., Rusu, A., Ravariu, F.: ‘Interface electric charge modeling and characterization with <delta> distribution generator strings in thin SOI films’, Microelectron. Elsevier J., 2006, 37, (3), pp. 943947.
    26. 26)
      • 26. Verma, K.C., Kotnala, R.K., Negi, N.S.: ‘Improved dielectric and ferromagnetic properties in Fe-doped PbTiO nanoparticles at room temperature’, Appl. Phys. Lett., 2008, 92, (15), article id 152902, pp. 13.
    27. 27)
      • 27. Mavroidis, P.N., Mikropoulos, P.N., Stassinopoulos, C.A.: ‘Lightning impulse behavior of short rod-plane gaps with a dielectric-covered rod’, IET Sci. Meas. Technol., 2010, 4, (2), pp. 5261.
    28. 28)
      • 28. Mikropoulos, P.N.: ‘Streamer propagation along RTV silicon rubber coated cylindrical insulators’, IET Sci. Meas. Technol., 2008, 2, (4), pp. 187195.
    29. 29)
      • 29. Antonini, G., Orlandi, A., Raimondo, L.: ‘Advanced models for signal integrity and electromagnetic compatibility-oriented analysis of nanointerconnects’, IEEE Trans. Electromagn. Compat., 2010, 52, (2), pp. 447454.

Related content

This is a required field
Please enter a valid email address