Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Cryogenic current comparators and their application to electrical metrology

Cryogenic current comparators and their application to electrical metrology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The cryogenic current comparator (CCC), first demonstrated nearly 40 years ago, has become a key component of electrical metrology. It utilises a superconducting screen to achieve very high ratio accuracy and hence has found many applications where the electrical units need to be scaled over decade values. It has been deployed over a wide range of currents from 100 A to 1 pA and has been used to verify the accuracy of electrical quantum effects such as the quantised Hall effect. This study is a review of the theory, design principles and most common applications of the CCC. In addition to the summary of its use in top-level electrical metrology, some recent developments such as the use of high temperature superconducting materials and applications outside the realisation of electrical units are described.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Hartland, A.: `Use of a cryogenic current comparator to determine the quantized Hall resistance in a silicon MOSFET', Proc. Precision Meas. Fund. Constants II, NBS Special Publication, 1982, 617, p. 543–548.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • A. Hartland , R.G. Jones , B.P. Kibble , D.J. Legg . The relationship between the SI ohm, the ohm at NPL and the quantized Hall resistance. IEEE Trans. Instrum. Meas. , 2 , 208 - 213
    36. 36)
    37. 37)
    38. 38)
      • G.T. Symm , C.A. Brebbia , J. Dominguez , F. Paris . (1992) Design of a cryogenic current comparator, Proc. boundary elements XIV: field problems and applications.
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • J. Gallop , F.: Piquemal , J. Clarke , A. Braginski . (2006) SQUIDs for standards and metrology, The SQUID handbook: applications of SQUIDs and SQUID systems.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • K. Grohmann , D. Hechtfischer . Kryostromkomparatoren als Präzisionsstandards für rationale Gleich- und Wechselstromverhältnisse. PTB-Mitteilungen , 328 - 344
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
      • ISO/IEC Guide 98-3:2008: ‘Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement’ (GUM, 1995).
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2010.0170
Loading

Related content

content/journals/10.1049/iet-smt.2010.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address