Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess SARGON – Smart energy domain ontology

The internet of things (IoT) is a paradigm where the fragmentation of standards, platforms, services, and technologies, often scattered among different vertical domains. Consequently, the smart energy system is one of the vertical domains in which IoT technology is investigated. At the early stages of studying the IoT domains that deal with big data and interoperability, a semantic layer can be served to approach the difficulty of heterogeneity in information and data representation from IoT devices. In 2015, smart appliance reference ontology (SAREF) was introduced to interconnect data of smart devices and facilitate the communication between IoT devices that use different protocols and standards. The modular design of SAREF concedes the definition of any new vertical domain describing functions that the devices perform. In this study, SARGON – SmArt eneRGy dOmain oNtology is offered which extends SAREF to cross-cut domain-specific information representing the smart energy domain and includes building and electrical grid automation together. SARGON ontology is powered by smart energy standards and IoT initiatives, as well as real use cases. It involves classes, properties, and instances explicitly created to cover the building and electrical grid automation domain. This study exhibits the development of SARGON and demonstrates it through a web application.

References

    1. 1)
      • 4. Minoli, D., Sohraby, K., Occhiogrosso, B.: ‘IoT considerations, requirements, and architectures for smart buildings – energy optimization and next-generation building management systems’, IEEE Internet Things J., 2017, 4, (1), pp. 269283.
    2. 2)
      • 45. de Roode, M., Fernández-Izquierdo, A., Daniele, L., et al: ‘SAREF4INMA: a SAREF extension for the industry and manufacturing domain’, Semant. Web., 2020, pp. 116.
    3. 3)
      • 15. Daniele, L., Solanki, M., den Hartog, F., et al: ‘Interoperability for smart appliances in the IoT world’. Int. Semantic Web Conf., Kobe, Japan, 2016, pp. 2129.
    4. 4)
      • 39. Hristozova, M., Sterling, L.: ‘An extreme method for developing lightweight ontologies'. In Workshop on Ontologies in Agent Systems, 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002.
    5. 5)
      • 8. Vermesan, O., Friess, P., Guillemin, P., et al: ‘Internet of things strategic research roadmap’, Internet Things-Global Technol. Societal Trends, 2011, 1, (2011), pp. 952.
    6. 6)
      • 51. Garijo, D.: ‘Widoco: a wizard for documenting ontologies'. Int. Semantic Web Conf., Vienna, Austria, 2017, pp. 94102.
    7. 7)
      • 46. Grüninger, M., Fox, M.S.: ‘Methodology for the design and evaluation of ontologies’ (Citeseer, 1995).
    8. 8)
      • 31. de Roode, M., Fernández-Izquierdo, A., Daniele, L., et al: ‘SAREF4INMA: a SAREF extension for the industry and manufacturing domain’.
    9. 9)
      • 14. Kofler, M.J., Reinisch, C., Kastner, W.: ‘A semantic representation of energy-related information in future smart homes’, Energy Build., 2012, 47, pp. 169179.
    10. 10)
      • 11. Bandyopadhyay, D., Sen, J.: ‘Internet of things: applications and challenges in technology and standardization’, Wirel. Pers. Commun., 2011, 58, (1), pp. 4969.
    11. 11)
      • 38. Pinto, H.S., Staab, S., Tempich, C.: ‘Diligent: towards a fine-grained methodology for distributed, loosely-controlled and evolving engineering of ontologies'. Proc. of the 16th European Conf. on Artificial Intelligence, Valencia, Spain, 2004, pp. 393397.
    12. 12)
      • 20. Specht, M., Rohjans, S.: ‘ICT and energy supply: IEC 61970/61968 common information model'. Standardization in Smart Grids, Springer, Berlin, Heidelberg, 2013, pp. 99114.
    13. 13)
      • 24. Stavropoulos, T.G., Vrakas, D., Vlachava, D., et al: ‘BOnSAI: a smart building ontology for ambient intelligence'. Proc. of the 2nd Int. Conf. on Web Intelligence, Mining and Semantics, New York, USA, 2012, pp. 112.
    14. 14)
      • 41. Auer, S., Herre, H.: ‘Rapidowl – an agile knowledge engineering methodology'. Int. Andrei Ershov Memorial Conf. on Perspectives of System Informatics, Novosibirsk, Russia, 2006, pp. 424430.
    15. 15)
      • 28. Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., et al: ‘Guidelines for linked data generation and publication: an example in building energy consumption’, Autom. Constr., 2015, 57, pp. 178187.
    16. 16)
      • 50. Fernández-Izquierdo, A., García-Castro, R.: ‘Themis: a tool for validating ontologies through requirements'. 31st Int. Conf. Software Engineering and Knowledge Engineering (SEKE), Lisbon, Portugal, 2019, pp. 573753.
    17. 17)
      • 27. Verhoosel, J., Rothengatter, D., Rumph, F., et al: ‘An ontology for modeling flexibility in smart grid energy management', in: ‘Ework and eBusiness in architecture, engineering and construction' (CRC Press, 2012), chapter 122, pp. 931938.
    18. 18)
      • 55. Haghgoo, M.: ‘Published SARGON Ontology'. Available at https://ontoology.linkeddata.es/.
    19. 19)
      • 9. Da Xu, L., He, W., Li, S.: ‘Internet of things in industries: a survey’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 22332243.
    20. 20)
      • 49. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: ‘OOPS!(ontology pitfall scanner!): an on-line tool for ontology evaluation’, Int. J. Semant. Web Inf. Syst. (IJSWIS), 2014, 10, (2), pp. 734.
    21. 21)
      • 10. Ray, P.P.: ‘A survey of iot cloud platforms’, Future Comput. Inform. J., 2016, 1, (1-2), pp. 3546.
    22. 22)
      • 47. Rubin, D.L., Noy, N.F., Musen, M.A.: ‘Protege: a tool for managing and using terminology in radiology applications’, J. Digit. Imaging, 2007, 20, (1), pp. 3446.
    23. 23)
      • 40. Presutti, V., Daga, E., Gangemi, A., et al: ‘Extreme design with content ontology design patterns'. Proc. Workshop on Ontology Patterns, Washington DC, USA, 2009, pp. 8397.
    24. 24)
      • 6. Tiwary, A., Mahato, M., Tripathi, M., et al: ‘Design and implementation of an innovative internet of things (IoT) based smart energy meter’/.
    25. 25)
      • 5. Taştan, M.: ‘Internet of things based smart energy management for smart home’, KSII Trans. Internet Inform. Syst., 2019, 13, (6), ISSN: 1976-7277.
    26. 26)
      • 1. De la Prieta, F., Corchado, J.M.: ‘Cloud computing and multiagent systems, a promising relationship’, In: ‘Intelligent agents in data-intensive computing', (Springer, 2016), pp. 143161.
    27. 27)
      • 33. Pal, A., Purushothaman, B.: ‘IoT technical challenges and solutions’, 2016.
    28. 28)
      • 12. Motiwalla, L.: ‘V, Jeff Thompson’, 2009. Enterprise Systems for Management.
    29. 29)
      • 23. Blomqvist, E., Thollanderb, P., Keskisärkkä, R., et al: ‘Energy efficiency measures as linked open data' (IOS Press, Lund, Sweden, 2014).
    30. 30)
      • 54. Kiryakov, A., Popov, B., Terziev, I., et al: ‘Semantic annotation, indexing, and retrieval’, J. Web Semant., 2004, 2, (1), pp. 4979.
    31. 31)
      • 36. Corcho, O., Gómez-Pérez, A., Fernández-López, M.: ‘Ontological engineering. with examples from the areas of knowledge management, e-commerce and the semantic web (advanced information and knowledge processing)’, 2004.
    32. 32)
      • 48. COMPOSER, T.: ‘Topbraid composer 2007 features and getting started guide version 1.0, created by topquadrant', US. US, 2007.
    33. 33)
      • 30. Standardisation, A.W.-l.: ‘Semantic interoperability’, Release, 2015.
    34. 34)
      • 7. Gubbi, J., Buyya, R., Marusic, S., et al: ‘Internet of things (IoT): a vision, architectural elements, and future directions’, Future Gener. Comput. Syst., 2013, 29, (7), pp. 16451660.
    35. 35)
      • 3. Lopez, P.G., Montresor, A., Epema, D., et al: ‘Vision and challenges’, Sigcomm Comput. Commun. Rev, 2015, 45, (5), pp. 3742.
    36. 36)
      • 21. Mackiewicz, R.E.: ‘Overview of iec 61850 and benefits'. 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., Canada, 2006, p. 8.
    37. 37)
      • 13. Curry, E., Hasan, S., O'Riain, S.: ‘Enterprise energy management using a linked dataspace for energy intelligence’. 2012 Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, Italy, 2012, pp. 16.
    38. 38)
      • 43. Castro, G.: ‘Vicinity d2. 2: detailed specification of the semantic model', Tech. Rep. Universidad Politécnica de Madrid (UPM), 2017, [Online]. Available at: https://www.vicinity2020.eu/vicinity. .
    39. 39)
      • 22. D'Onofrio, S., Portmann, E.: ‘Cognitive computing in smart cities’, Informatik-Spektrum, 2017, 40, (1), pp. 4657.
    40. 40)
    41. 41)
      • 34. ETSI: SmartM2M;Smart Appliances Extension to SAREF; Part 1: Energy Domain,(ETSI TS 103 410-1), 2017. Available at https://www.etsi.org/deliver/etsi_ts/103400_103499/10341001.
    42. 42)
      • 56. Sirin, E., Parsia, B., Grau, B.C., et al: ‘Pellet: a practical owl-dl reasoner’, J. Web Semant., 2007, 5, (2), pp. 5153.
    43. 43)
      • 29. arez-Figuero, S.: ‘Neon methodology for building ontology networks: specification, scheduling and reuse'. PhD thesis, Informatica, 2010.
    44. 44)
      • 42. Poveda-Villalón, M.: ‘A reuse-based lightweight method for developing linked data ontologies and vocabularies'. Extended SemanticWeb Conf., Crete, Greece, 2012, pp. 833837.
    45. 45)
      • 53. Alobaid, A., Garijo, D., Poveda-Villalón, M., et al: ‘Automating ontology engineering support activities with ontoology’, J. Web Semant., 2019, 57, p. 100472.
    46. 46)
      • 16. Gómez-Pérez, A., Corcho, O.: ‘Ontology languages for the semantic web’, IEEE Intell. Syst., 2002, 17, (1), pp. 5460.
    47. 47)
      • 52. Silvio Peroni: Live OWL Documentation Environment (LODE), 2014. Available at https://github.com/essepuntato/LODE.
    48. 48)
      • 25. Burel, G., Piccolo, L.S., Alani, H.: ‘Energyuse – a collective semantic platform for monitoring and discussing energy consumption'. Int. Semantic Web Conf., Kobe, Japan, 2016, pp. 257272.
    49. 49)
      • 37. Staab, S., Studer, R., Schnurr, H.-P., et al: ‘Knowledge processes and ontologies’, IEEE Intell. Syst., 2001, 16, (1), pp. 2634.
    50. 50)
      • 35. Platform, N.C.: ‘N5GEH cloud platform GitHub repository'. Available at https://github.com/N5GEH/main.
    51. 51)
      • 18. Chartier, P., Roussos, G.: ‘From identification to discovery’, Internet of Things, 132.
    52. 52)
      • 44. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernandez-Lopez, M.: ‘The neon methodology framework: A scenario-based methodology for ontology development’, Appl. Ontol., 2015, 10, (2), pp. 107145.
    53. 53)
      • 17. Daniele, L., den Hartog, F., Roes, J.: ‘Created in close interaction with the industry: the smart appliances reference (saref) ontology'. Int.Workshop Formal Ontologies Meet Industries, Berlin German, 2015, pp. 100112.
    54. 54)
      • 19. Uslar, M., Specht, M., Rohjans, S., et al: ‘The common information model CIM: IEC 61968/61970 and 62325-A practical introduction to the CIM', 2012.
    55. 55)
      • 26. Gillani, L.F.P.G. S.: ‘A generic ontology for prosumer-oriented smart grid'. EDBT/ICDT Workshops, 2014, pp. 134139.
    56. 56)
      • 57. Zhou, H.: ‘The internet of things in the cloud: a middleware perspective’, (2012).
    57. 57)
      • 32. Baras, K., Brito, L.M.: ‘Introduction to the internet of things', In: ‘Internet of Things' (Chapman and Hall/CRC, 2017), pp. 332.
    58. 58)
      • 2. Shi, W., Cao, J., Zhang, Q., et al: ‘Edge computing: vision and challenges’, IEEE Internet Things J., 2016, 3, (2016), pp. 637646.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smc.2020.0049
Loading

Related content

content/journals/10.1049/iet-smc.2020.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address