Your browser does not support JavaScript!

access icon openaccess Decentralised game-theoretic management for a community-based transportation system

The transportation system needs innovative schemes and applications to facilitate mobility in the cities that is user-friendly, easy, enjoyable and convenient according to citizens' constraints. In this study, the authors propose a decentralised architecture-based game-theoretic model for a community-based transportation system. This scheme, which involves multi-transportation forms, allows the user to be an active prosumer who can travel in the city using public and private forms and also make decisions about the trip cost. The authors propose a decentralised game-theoretic transportation algorithm to manage passenger needs, public bus interests, car ride-sharing and bicycle constraints. The simulations prove the effectiveness of the proposed scheme. The effectiveness of the decentralised game-theoretic transportation model appears more clearly when compared with the multi-mode double dynamic approach in [1], as it gives much better optimisation results.


    1. 1)
      • 23. Namoun, A.: ‘Extracting the factor influencing the use of community-based traveler information systems by analysing commuting critical incidents’, J. Theor. Appl. Inf. Technol., 2018, 96, (24), pp. 81328144.
    2. 2)
      • 19. Zhang Zhuoran Yang, K., Liu, H., Zhang, T., et al: ‘Fully decentralized multi-agent reinforcement learning with networked agents’. 35th Int. Conf. on Machine Learning (ICML), Stockholmsmässan, Stockholm, Sweden, 2018, pp. 93409371.
    3. 3)
      • 1. Wei, B., Saberi, M., Zhang, F., et al: ‘Modeling and managing ridesharing in a multi-modal network with an aggregate traffic representation: a doubly dynamical approach’, Transp. Res. Part C Emerg. Technol., 2020, 117, p. 102670.
    4. 4)
      • 3. Hu, X., Giang, N.K., Shen, J., et al: ‘Towards mobility-as-a-service to promote smart transportation’. Proc. Conf. IEEE 82nd Veh. Technol, Boston, USA, September 2015, pp. 15.
    5. 5)
      • 17. Duan, L., Wei, Y., Zhang, J., et al: ‘Centralized and decentralized autonomous dispatching strategy for dynamic autonomous taxi operation in hybrid request mode’, Transp. Res. C, Emerg. Technol.., 2020, 111, pp. 397420.
    6. 6)
      • 6. Okpoti, E.S., Jeong, I.J., Moon, S.K.: ‘Decentralized determination of design variables among cooperative designers for product platform design in a product family’, Comput. Ind. Eng., 2019, 135, pp. 601614.
    7. 7)
      • 2. Bhattacharya, S., Banerjee, S., Chakraborty, C.: ‘Iot-based smart transportation system under real-time environment’, Big Data-Enabled Internet Things, 2019, 16, pp. 353372.
    8. 8)
      • 13. Zhong, Y., Gao, L., Wang, T., et al: ‘Achieving stable and optimal passenger-driver matching in ride-sharing system’. Proc. 15th IEEE Int. Conf. Mobile Ad Hoc Sensor Systems (MASS 2018), Chengdu, China, 2018, pp. 125133.
    9. 9)
      • 4. Röhr, T., Rovigo, M.: ‘Public service approach to car-sharing in midsized towns: the example of Belfort (France)’, IET Intell. Transp. Syst., 2017, 11, (7), pp. 403410.
    10. 10)
      • 12. Cheikh, S.B., Hammadi, S., Tahon, C.: ‘Based-agent distributed architecture to manage the dynamic multi-hop ridesharing system’. Proc. - 2014 IEEE 13th Int. Symp. Network Computing and Applications (NCA 2014), Cambridge, Massachusetts, USA., 2014, pp. 101104.
    11. 11)
      • 20. Raimondo, P., Serianni, A., Palmieri, N., et al: ‘Improving intelligent transportation system (ITS) introducing a FOG cooperative strategy’. Proc. 26th Telecommunications Forum, (TELFOR 2018), Telford, Telford and Wrekin, 2018, pp. 14.
    12. 12)
      • 15. Narayanam, R., Narahari, Y.: ‘A game theory inspired, decentralized, local information based algorithm for community detection in social graphs’. Proc. Int. Conf. Pattern Recognition (Icpr), Tsukuba Science City, Japan, 2012, pp. 10721075.
    13. 13)
      • 25. Zhu, W., Chen, M., Wang, D., et al: ‘Policy-combination oriented optimization for public transportation based on the game theory’, Math. Probl. Eng., 2018, 2018, Article ID: 7510279.
    14. 14)
      • 18. Bozdog, N.V., Voulgaris, S., Bal, H., et al: ‘Peer matcher: decentralized partnership formation’, Int. Conf. Self-Adapt. Self-Organizing Syst. SASO, 2015, 2015-Octob, pp. 3140.
    15. 15)
      • 9. Corrales, C.M., Kono, T., Teramoto, S.: ‘Legal aspects of decentralized and platform-driven economies’, in Green, S. (Ed.): ‘Legal tech and the new sharing economy.’ (Springer Nature Singapore Pte Ltd, Singapore, 2020, 1st edn.), pp. 111.
    16. 16)
      • 5. Po-Chuan, C., He-Yen, H., Kuan-Wu, S., et al: ‘Predicting station level demand in a bike-sharing system using recurrent neural networks’, IET Intell. Transp. Syst., 2020, 14, (6), pp. 554561.
    17. 17)
      • 24. Piao, L., Ai, Q., Fan, S.: ‘Game theoretic based pricing strategy for electric vehicle charging stations’. IET Conf. Publications, Birmingham, UK., 2015, Vol.2015(CP679).
    18. 18)
      • 10. Juho, H., Mimmi, S., Antti, U.: ‘The sharing economy: why people participate in collaborative consumption’, Wiley Online Library., 2016, 67, (9), pp. 20472059.
    19. 19)
      • 21. Santamaria, A.F., Tropea, M., Fazio, P., et al: ‘A decentralized ITS architecture for efficient distribution of traffic task management’. Proc. 2018 11th IFIP Wireless Mobile Networking Conf. (WMNC 2018), Prague, Czech Republic, 2018, pp. 15.
    20. 20)
      • 14. Bozdog, N.V., Makkes, M.X., Van Halteren, A., et al: ‘Ridematcher: peer-to-peer matching of passengers for efficient ridesharing’. Proc. 18th IEEE/ACM Int. Symp. Cluster Cloud Grid Computing (CCGRID 2018), Washington, DC, USA., 2018, pp. 263272.
    21. 21)
      • 11. Shaheen, S.A., Chan, N.D.: ‘Mobility and the sharing economy: potential to facilitate the first-and last-mile public transit connections’, Built. Environ., 2016, 42, (4), pp. 573588.
    22. 22)
      • 22. Martino, S.D., Galiero, R., Giorio, C.: ‘A matching-algorithm based on the cloud and positioning systems to improve carpooling’. Pro. DMS 2011 - 17th Int. Conf. on Distributed Multimedia Systems, Florence, Italy, 2011, pp. 9095.
    23. 23)
      • 16. Nourinejad, M., Roorda, M.J.: ‘Agent based model for dynamic ridesharing’, Transp. Res. Part C Emerg. Technol., 2016, 64, pp. 117132.
    24. 24)
      • 8. Paret, D., Huon, J.-P.: ‘Secure connected objects’ (ISTE Ltd and John Wiley and Sons, Inc, Great Britain and the United States, 2017, 1st edn.).
    25. 25)
      • 7. Palma-Behnke, R., Jiménez-Estévez, G., Vargas, L.S., et al: ‘A day-ahead energy market simulation framework for assessing the impact of decentralized generators on step-down transformer power flows’, Int. J. Electr. Power Energy Syst., 2012, 35, (1), pp. 1020.

Related content

This is a required field
Please enter a valid email address