Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess IoT-enabled dependable control for solar energy harvesting in smart buildings

Efficiency and reliability have been essential requirements for energy generation in smart cities. This study presents the design and development of dependable control schemes for microgrid management, which can be seamlessly integrated into the management system of smart buildings. Here, to recover from failures in the solar energy system of a building microgrid, dependable controllers are proposed along with their hardware implementation. The system features the use of Internet of Things (IoT) as its core to coordinate the operation of multiple subsystems in a scalable manner. The control scheme uses a number of controllers cooperatively functioning via a token-based mechanism within the network to provide redundancy and thus reliability in solar tracking. The system exploits data from not only local in-situ sensors but also online sources via IoT networks for fault-tolerant control. Experiments conducted in a 12-storey building indicate that the harvested solar energy meets the design requirement while the control reliability is maintained in face of communication or hardware disruptions. The results confirmed the validity of the proposed approach and its applicability to energy management in smart buildings.

References

    1. 1)
      • 35. American Society of Civil Engineers: ‘Minimum design loads for buildings and other structures’ (ASCE/SEI 7-05, 2006).
    2. 2)
      • 16. ‘Ausgrid - 2017-18 local council community electricity report’. Available at https://www.ausgrid.com.au/Industry/Innovation-and-research/Data-to-share/Average-electricity-use, accessed: 2019-09-13.
    3. 3)
      • 34. Phung, M.D., Tran, Q.V., Tan, K.K.: ‘Transport protocols for internet based real-time systems: A comparative analysis’. The Third Int. Conf. on Communication and Electronics (ICCE), Nha Trang, Vietnam, 2010.
    4. 4)
      • 39. Yan, J., Vyatkin, V.: ‘Distributed software architecture enabling peer-to-peer communicating controllers’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 22002209.
    5. 5)
      • 24. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A grey wolf-assisted perturb and observe MPPT algorithm for a PV system’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 340347.
    6. 6)
      • 19. Roth, P., Georgiev, A., Boudinov, H.: ‘Design and construction of a system for sun-tracking’, Renew. Energy, 2004, 29, (3), pp. 393402.
    7. 7)
      • 11. Sumathi, V., Jayapragash, R., Bakshi, A., et al: ‘Solar tracking methods to maximize PV system output - a review of the methods adopted in recent decade’, Renew. Sust. Energy Rev., 2017, 74, pp. 130138.
    8. 8)
      • 30. Avizienis, A., Laprie, J.., Randell, B., et al: ‘Basic concepts and taxonomy of dependable and secure computing’, IEEE Trans. Dependable Secur. Comput., 2004, 1, (1), pp. 1133.
    9. 9)
      • 21. Tina, G.M., Gagliano, S., Graditi, G., et al: ‘Experimental validation of a probabilistic model for estimating the double axis PV tracking energy production’, Appl. Energy, 2012, 97, pp. 990998; Energy Solutions for a Sustainable World – Proceedings of the Third Int. Conf. on Applied Energy, Perugia, Italy, 16–18 May 2011.
    10. 10)
      • 43. Stojkoska, B.L.R., Trivodaliev, K.V.: ‘A review of internet of things for smart home: challenges and solutions’, J. Clean Prod., 2017, 140, pp. 14541464.
    11. 11)
      • 18. Singh, G.K.: ‘Solar power generation by PV (photovoltaic) technology: a review’, Energy, 2013, 53, pp. 113.
    12. 12)
      • 28. Ramli, M.A.M., Twaha, S., Ishaque, K., et al: ‘A review on maximum power point tracking for photovoltaic systems with and without shading conditions’, Renew. Sust. Energy Rev., 2017, 67, pp. 144159.
    13. 13)
      • 10. Fathabadi, H.: ‘Novel online sensorless dual-axis sun tracker’, IEEE/ASME Trans. Mechatronics, 2017, 22, (1), pp. 321328.
    14. 14)
      • 17. Nelson, T., McCracken.Hewson, E., Whish.Wilson, P., et al: ‘Price dispersion in Australian retail electricity markets’, Energy Econ., 2018, 70, pp. 158169.
    15. 15)
      • 41. Geoscience Australia – Compute sun and moon azimuth and elevation’., Available at http://www.ga.gov.au/geodesy/astro/smpos.jsp, accessed: 2019-05-19.
    16. 16)
      • 27. Barth, C., Pilawa-Podgurski, R.C.N.: ‘Dithering digital ripple correlation control for photovoltaic maximum power point tracking’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 45484559.
    17. 17)
      • 40. Phat, V.N., Ha, Q.P.: ‘H-inf control and exponential stability of nonlinear nonautonomous systems with time-varying delay’, J. Optim. Theory Appl., 2009, 142, (3), pp. 603618.
    18. 18)
      • 6. Yu, W., Li, B., Jia, H., et al: ‘Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design’, Energy Build., 2015, 88, pp. 135143.
    19. 19)
      • 5. Zhao, P., Suryanarayanan, S., Simoes, M.G.: ‘An energy management system for building structures using a multi-agent decision-making control methodology’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 322330.
    20. 20)
      • 13. Yu, X., Xue, Y.: ‘Smart grids: a cyber-physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    21. 21)
      • 22. Yao, Y., Hu, Y., Gao, S., et al: ‘A multipurpose dual-axis solar tracker with two tracking strategies’, Renew. Energy, 2014, 72, pp. 8898.
    22. 22)
      • 25. Tey, K.S., Mekhilef, S.: ‘Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53845392.
    23. 23)
      • 4. Kwak, Y., Huh, J.H., Jang, C.: ‘Development of a model predictive control framework through real-time building energy management system data’, Appl. Energy, 2015, 155, pp. 113.
    24. 24)
      • 42. Grena, R.: ‘Five new algorithms for the computation of sun position from 2010 to 2110’, Sol. Energy, 2012, 86, (5), pp. 13231337.
    25. 25)
      • 37. Tran, T., Ha, Q.P.: ‘A quadratic constraint approach to model predictive control of interconnected systems’ (Springer, Singapore, 2018).
    26. 26)
      • 14. Mo, Y., Kim, T.H., Brancik, K., et al: ‘Cyber-physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    27. 27)
      • 8. Machairas, V., Tsangrassoulis, A., Axarli, K.: ‘Algorithms for optimization of building design: a review’, Renew. Sust. Energy Rev., 2014, 31, pp. 101112.
    28. 28)
      • 9. Nguyen, T.A., Aiello, M.: ‘Energy intelligent buildings based on user activity: a survey’, Energy Build., 2013, 56, pp. 244257.
    29. 29)
      • 26. Loukriz, A., Haddadi, M., Messalti, S.: ‘Simulation and experimental design of a new advanced variable step size incremental conductance MPPT algorithm for PV systems’, ISA Trans., 2016, 62, pp. 3038. sI: Control of Renewable Energy Systems.
    30. 30)
      • 33. Paul.Gruhn, P.: ‘Safety instrumented systems: design, analysis, and justification’, North Carolina, USA, 2006.
    31. 31)
      • 32. Schooman, M.L.: ‘Reliability of computer systems and networks: fault tolerance, analysis and design’ (Wiley-Interscience, New York, USA, 2001).
    32. 32)
      • 3. Rodger, J.A.: ‘A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings’, Expert Syst. Appl., 2014, 41, (4, Part 2), pp. 18131829.
    33. 33)
      • 7. Delgarm, N., Sajadi, B., Kowsary, F., et al: ‘Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)’, Appl. Energy, 2016, 170, pp. 293303.
    34. 34)
      • 15. Caldognetto, T., Tenti, P., Costabeber, A., et al: ‘Improving microgrid performance by cooperative control of distributed energy sources’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 39213930.
    35. 35)
      • 29. Rakhshan, M., Vafamand, N., Khooban, M., et al: ‘Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (1), pp. 292299.
    36. 36)
      • 23. Sidek, M.H.M., Azis, N., Hasan, W.Z.W., et al: ‘Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control’, Energy, 2017, 124, pp. 160170.
    37. 37)
      • 12. Islam, G., Muyeen, S.M., Al.Durra, A., et al: ‘RTDS implementation of an improved sliding mode based inverter controller for PV system’, ISA Trans., 2016, 62, pp. 5059. sI: Control of Renewable Energy Systems.
    38. 38)
      • 1. Shaikh, P.H., Nor, N.B.M., Nallagownden, P., et al: ‘A review on optimized control systems for building energy and comfort management of smart sustainable buildings’, Renew. Sust. Energy Rev., 2014, 34, pp. 409429.
    39. 39)
      • 31. Tran, T., Ha, Q.P.: ‘Dependable control systems with internet of things’, ISA Trans., 2015, 59, pp. 303313.
    40. 40)
      • 38. Phung, M.D., De La Villefromoy, M., Ha, Q.: ‘Management of solar energy in microgrids using IoT-based dependable control’. 2017 20th Int. Conf. on Electrical Machines and Systems (ICEMS), 2017, pp. 16.
    41. 41)
      • 2. Marvuglia, A., Messineo, A., Nicolosi, G.: ‘Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building’, Build. Environ., 2014, 72, pp. 287299.
    42. 42)
      • 36. Bonthu, R.K., Pham, H., Aguilera, R.P., et al: ‘Minimization of building energy cost by optimally managing pv and battery energy storage systems’. 2017 20th Int. Conf. on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017, pp. 16.
    43. 43)
      • 20. Rubio, F.R., Ortega, M.G., Gordillo, F., et al: ‘Application of new control strategy for sun tracking’, Energy Convers. Manage., 2007, 48, (7), pp. 21742184.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smc.2019.0052
Loading

Related content

content/journals/10.1049/iet-smc.2019.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address