http://iet.metastore.ingenta.com
1887

access icon openaccess IoT-enabled dependable control for solar energy harvesting in smart buildings

Loading full text...

Full text loading...

/deliver/fulltext/iet-smc/1/2/IET-SMC.2019.0052.html;jsessionid=1de5yxjwis3h8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-smc.2019.0052&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Shaikh, P.H., Nor, N.B.M., Nallagownden, P., et al: ‘A review on optimized control systems for building energy and comfort management of smart sustainable buildings’, Renew. Sust. Energy Rev., 2014, 34, pp. 409429.
    2. 2)
      • 2. Marvuglia, A., Messineo, A., Nicolosi, G.: ‘Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building’, Build. Environ., 2014, 72, pp. 287299.
    3. 3)
      • 3. Rodger, J.A.: ‘A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings’, Expert Syst. Appl., 2014, 41, (4, Part 2), pp. 18131829.
    4. 4)
      • 4. Kwak, Y., Huh, J.H., Jang, C.: ‘Development of a model predictive control framework through real-time building energy management system data’, Appl. Energy, 2015, 155, pp. 113.
    5. 5)
      • 5. Zhao, P., Suryanarayanan, S., Simoes, M.G.: ‘An energy management system for building structures using a multi-agent decision-making control methodology’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 322330.
    6. 6)
      • 6. Yu, W., Li, B., Jia, H., et al: ‘Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design’, Energy Build., 2015, 88, pp. 135143.
    7. 7)
      • 7. Delgarm, N., Sajadi, B., Kowsary, F., et al: ‘Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)’, Appl. Energy, 2016, 170, pp. 293303.
    8. 8)
      • 8. Machairas, V., Tsangrassoulis, A., Axarli, K.: ‘Algorithms for optimization of building design: a review’, Renew. Sust. Energy Rev., 2014, 31, pp. 101112.
    9. 9)
      • 9. Nguyen, T.A., Aiello, M.: ‘Energy intelligent buildings based on user activity: a survey’, Energy Build., 2013, 56, pp. 244257.
    10. 10)
      • 10. Fathabadi, H.: ‘Novel online sensorless dual-axis sun tracker’, IEEE/ASME Trans. Mechatronics, 2017, 22, (1), pp. 321328.
    11. 11)
      • 11. Sumathi, V., Jayapragash, R., Bakshi, A., et al: ‘Solar tracking methods to maximize PV system output - a review of the methods adopted in recent decade’, Renew. Sust. Energy Rev., 2017, 74, pp. 130138.
    12. 12)
      • 12. Islam, G., Muyeen, S.M., Al.Durra, A., et al: ‘RTDS implementation of an improved sliding mode based inverter controller for PV system’, ISA Trans., 2016, 62, pp. 5059. sI: Control of Renewable Energy Systems.
    13. 13)
      • 13. Yu, X., Xue, Y.: ‘Smart grids: a cyber-physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    14. 14)
      • 14. Mo, Y., Kim, T.H., Brancik, K., et al: ‘Cyber-physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    15. 15)
      • 15. Caldognetto, T., Tenti, P., Costabeber, A., et al: ‘Improving microgrid performance by cooperative control of distributed energy sources’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 39213930.
    16. 16)
      • 16. ‘Ausgrid - 2017-18 local council community electricity report’. Available at https://www.ausgrid.com.au/Industry/Innovation-and-research/Data-to-share/Average-electricity-use, accessed: 2019-09-13.
    17. 17)
      • 17. Nelson, T., McCracken.Hewson, E., Whish.Wilson, P., et al: ‘Price dispersion in Australian retail electricity markets’, Energy Econ., 2018, 70, pp. 158169.
    18. 18)
      • 18. Singh, G.K.: ‘Solar power generation by PV (photovoltaic) technology: a review’, Energy, 2013, 53, pp. 113.
    19. 19)
      • 19. Roth, P., Georgiev, A., Boudinov, H.: ‘Design and construction of a system for sun-tracking’, Renew. Energy, 2004, 29, (3), pp. 393402.
    20. 20)
      • 20. Rubio, F.R., Ortega, M.G., Gordillo, F., et al: ‘Application of new control strategy for sun tracking’, Energy Convers. Manage., 2007, 48, (7), pp. 21742184.
    21. 21)
      • 21. Tina, G.M., Gagliano, S., Graditi, G., et al: ‘Experimental validation of a probabilistic model for estimating the double axis PV tracking energy production’, Appl. Energy, 2012, 97, pp. 990998; Energy Solutions for a Sustainable World – Proceedings of the Third Int. Conf. on Applied Energy, Perugia, Italy, 16–18 May 2011.
    22. 22)
      • 22. Yao, Y., Hu, Y., Gao, S., et al: ‘A multipurpose dual-axis solar tracker with two tracking strategies’, Renew. Energy, 2014, 72, pp. 8898.
    23. 23)
      • 23. Sidek, M.H.M., Azis, N., Hasan, W.Z.W., et al: ‘Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control’, Energy, 2017, 124, pp. 160170.
    24. 24)
      • 24. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A grey wolf-assisted perturb and observe MPPT algorithm for a PV system’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 340347.
    25. 25)
      • 25. Tey, K.S., Mekhilef, S.: ‘Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53845392.
    26. 26)
      • 26. Loukriz, A., Haddadi, M., Messalti, S.: ‘Simulation and experimental design of a new advanced variable step size incremental conductance MPPT algorithm for PV systems’, ISA Trans., 2016, 62, pp. 3038. sI: Control of Renewable Energy Systems.
    27. 27)
      • 27. Barth, C., Pilawa-Podgurski, R.C.N.: ‘Dithering digital ripple correlation control for photovoltaic maximum power point tracking’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 45484559.
    28. 28)
      • 28. Ramli, M.A.M., Twaha, S., Ishaque, K., et al: ‘A review on maximum power point tracking for photovoltaic systems with and without shading conditions’, Renew. Sust. Energy Rev., 2017, 67, pp. 144159.
    29. 29)
      • 29. Rakhshan, M., Vafamand, N., Khooban, M., et al: ‘Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (1), pp. 292299.
    30. 30)
      • 30. Avizienis, A., Laprie, J.., Randell, B., et al: ‘Basic concepts and taxonomy of dependable and secure computing’, IEEE Trans. Dependable Secur. Comput., 2004, 1, (1), pp. 1133.
    31. 31)
      • 31. Tran, T., Ha, Q.P.: ‘Dependable control systems with internet of things’, ISA Trans., 2015, 59, pp. 303313.
    32. 32)
      • 32. Schooman, M.L.: ‘Reliability of computer systems and networks: fault tolerance, analysis and design’ (Wiley-Interscience, New York, USA, 2001).
    33. 33)
      • 33. Paul.Gruhn, P.: ‘Safety instrumented systems: design, analysis, and justification’, North Carolina, USA, 2006.
    34. 34)
      • 34. Phung, M.D., Tran, Q.V., Tan, K.K.: ‘Transport protocols for internet based real-time systems: A comparative analysis’. The Third Int. Conf. on Communication and Electronics (ICCE), Nha Trang, Vietnam, 2010.
    35. 35)
      • 35. American Society of Civil Engineers: ‘Minimum design loads for buildings and other structures’ (ASCE/SEI 7-05, 2006).
    36. 36)
      • 36. Bonthu, R.K., Pham, H., Aguilera, R.P., et al: ‘Minimization of building energy cost by optimally managing pv and battery energy storage systems’. 2017 20th Int. Conf. on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017, pp. 16.
    37. 37)
      • 37. Tran, T., Ha, Q.P.: ‘A quadratic constraint approach to model predictive control of interconnected systems’ (Springer, Singapore, 2018).
    38. 38)
      • 38. Phung, M.D., De La Villefromoy, M., Ha, Q.: ‘Management of solar energy in microgrids using IoT-based dependable control’. 2017 20th Int. Conf. on Electrical Machines and Systems (ICEMS), 2017, pp. 16.
    39. 39)
      • 39. Yan, J., Vyatkin, V.: ‘Distributed software architecture enabling peer-to-peer communicating controllers’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 22002209.
    40. 40)
      • 40. Phat, V.N., Ha, Q.P.: ‘H-inf control and exponential stability of nonlinear nonautonomous systems with time-varying delay’, J. Optim. Theory Appl., 2009, 142, (3), pp. 603618.
    41. 41)
      • 41. Geoscience Australia – Compute sun and moon azimuth and elevation’., Available at http://www.ga.gov.au/geodesy/astro/smpos.jsp, accessed: 2019-05-19.
    42. 42)
      • 42. Grena, R.: ‘Five new algorithms for the computation of sun position from 2010 to 2110’, Sol. Energy, 2012, 86, (5), pp. 13231337.
    43. 43)
      • 43. Stojkoska, B.L.R., Trivodaliev, K.V.: ‘A review of internet of things for smart home: challenges and solutions’, J. Clean Prod., 2017, 140, pp. 14541464.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smc.2019.0052
Loading

Related content

content/journals/10.1049/iet-smc.2019.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address