Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess City brain: practice of large-scale artificial intelligence in the real world

A city is an aggregate of a huge amount of heterogeneous data. However, extracting meaningful values from that data remains a challenge. City Brain is an end-to-end system whose goal is to glean irreplaceable values from big city data, specifically from videos, with the assistance of rapidly evolving artificial intelligence technologies and fast-growing computing capacity. From cognition to optimisation, to decision-making, from search to prediction and ultimately, to intervention, City Brain improves the way to manage the city, as well as the way to live in it. In this study, the authors introduce current practices of the City Brain platform in a few cities in China, including what they can do to achieve the goal and make it a reality. Then they focus on the system overview and key technical details of each component of the City Brain system, from cognition to intervention. Lastly, they present a few deployment cases of City Brain in various cities in China.

References

    1. 1)
      • 11. Wanli, M., Wynter, L.: ‘Vehicle arrival prediction using multiple data sources including passenger bus arrival prediction’. US Patent 9,177,473, 2017.
    2. 2)
      • 35. Goesele, M., Snavely, N., Curless, B., et al: ‘Multi-view stereo for community photo collections’. 2007 IEEE 11th Int. Conf. on Computer Vision, 2007, pp. 18.
    3. 3)
      • 6. Yan, X., Yu, P.S., Han, J.: ‘Graph indexing: a frequent structure-based approach’. Proc. 2004 ACM SIGMOD Int. Conf. on Management of Data, 2004, pp. 335346.
    4. 4)
      • 25. Agarwal, S., Snavely, N., Simon, I., et al: ‘Building Rome in a day’. 2009 IEEE 12th Int. Conf. on Computer Vision, 2009, pp. 7279.
    5. 5)
      • 2. Zhao, Y., Deng, B., Shen, C., et al: ‘Spatio-temporal autoencoder for video anomaly detection’. Proc. 25th ACM Int. Conf. on Multimedia, 2017, pp. 19331941.
    6. 6)
      • 21. Hirzer, M., Beleznai, C., Roth, P.M., et al: ‘Person re-identification by descriptive and discriminative classification’.17th Scandinavian Conf. On Image Analysis, SCIA, 2011, pp. 91102.
    7. 7)
      • 33. Sibley, D., Mei, C., Reid, I.D., et al: ‘Adaptive relative bundle adjustment’. Robotics: Science and Systems, 2009, vol. 32, p. 33.
    8. 8)
      • 14. Li, W., Zhao, R., Xiao, T., et al: ‘Deepreid: deep filter pairing neural network for person re-identification’. 2014 IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 152159.
    9. 9)
      • 15. Zheng, L., Shen, L., Tian, L., et al: ‘Scalable person re-identification: a benchmark’. IEEE Int. Conf. on Computer Vision (ICCV), 2015, pp. 11161124.
    10. 10)
      • 30. Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381395.
    11. 11)
      • 36. Wang, M., Lai, B., Jin, Z., et al: ‘Dynamic spatiotemporal graph-based CNNs for traffic prediction’, arXiv preprint:1812.02019, 2018.
    12. 12)
      • 34. Wu, C., Agarwal, S., Curless, B., et al: ‘Multicore bundle adjustment’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 30573064.
    13. 13)
      • 27. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    14. 14)
      • 18. Zheng, Z., Zheng, L., Yang, Y.: ‘Unlabeled samples generated by GAN improve the person re-identification baseline in vitro’. IEEE Int. Conf. on Computer Vision, 2017, pp. 37743782.
    15. 15)
      • 12. Wynter, L., Min, W., Morris, B.G.: ‘Method and structure for vehicular traffic prediction with link interactions and missing real-time data’. US Patent 8,755,991, 2014.
    16. 16)
      • 1. Chu, W., Liu, Y., Shen, C., et al: ‘Multi-task vehicle detection with region-of-interest voting’, IEEE Trans. Image Process., 2018, 27, (1), pp. 432441.
    17. 17)
      • 23. Jégou, H., Douze, M., Schmid, C.: ‘Product quantization for nearest neighbor search’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (1), pp. 117128.
    18. 18)
      • 19. Zhao, Y., Shen, X., Jin, Z., et al: ‘Attribute-driven feature disentangling and temporal aggregation for video person re-identification’.  Conf. Computer Vision and Pattern Recognition, 2019.
    19. 19)
      • 5. Eswari, R., Nickolas, S.: ‘Effective task scheduling for heterogeneous distributed systems using firefly algorithm’, Int. J. Comput. Sci. Eng., 2015, 11, (2), pp. 132142.
    20. 20)
      • 3. Shen, C., Jin, Z., Zhao, Y., et al: ‘Deep Siamese network with multi-level similarity perception for person re-identification’. Proc. 25th ACM Int. Conf. on Multimedia, 2017, pp. 19421950.
    21. 21)
      • 24. Sivic, J., Zisserman, A.: ‘Video Google: a text retrieval approach to object matching in videos’. Int. Conf. on Computer Vision (ICCV 2003), 2003, pp. 14701477.
    22. 22)
      • 8. Fu, Z., Jin, Z., Qi, G.-J., et al: ‘Previewer for multiscale object detector’. Proc. 26th ACM Int. Conf. on Multimedia, 2018, pp. 265273.
    23. 23)
      • 7. Yang, J., Shen, X., Xing, J., et al: ‘Quantization networks’. Conference Computer Vision and Pattern Recognition, 2019.
    24. 24)
      • 16. Li, W., Zhao, R., Wang, X.: ‘Human reidentification with transferred metric learning’. Asian Conf. on Computer Vision (ACCV), 2012, pp. 3144.
    25. 25)
      • 32. Agarwal, S., Snavely, N., Seitz, S.M., et al: ‘Bundle adjustment in the large’. European Conf. on Computer Vision, 2010, pp. 2942.
    26. 26)
      • 22. Zheng, L., Bie, Z., Sun, Y., et al: ‘MARS: a video benchmark for large-scale person re-identification’. 14th European Conf. On Computer Vision, ECCV, 2016, pp. 868884.
    27. 27)
      • 26. Bay, H., Tuytelaars, T., Gool, L.V.: ‘Surf: speeded up robust features’. European Conf. on Computer Vision, 2006, pp. 404417.
    28. 28)
      • 31. Triggs, B., McLauchlan, P.F., Hartley, R.I., et al: ‘Bundle adjustment – a modern synthesis’. Int. Workshop on Vision Algorithms, 1999, pp. 298372.
    29. 29)
      • 10. Min, W., Wynter, L.: ‘Real-time road traffic prediction with spatio-temporal correlations’, 2011, pp. 606616.
    30. 30)
      • 29. Zhao, Y., Li, Y., Shao, Z., et al: ‘LSOD: local sparse orthogonal descriptor for image matching’. Proc. 24th ACM Int. Conf. on Multimedia, 2016, pp. 232236.
    31. 31)
      • 17. Yang, J., Shen, X., Tian, X., et al: ‘Local convolutional neural networks for person re-identification’. Proc. 26th ACM Int. Conf. on Multimedia, 2018, pp. 10741082.
    32. 32)
      • 28. DeTone, D., Malisiewicz, T., Rabinovich, A.: ‘Superpoint: self-supervised interest point detection and description’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2018, pp. 224236.
    33. 33)
      • 4. http://https://github.com/apache/flink/tree/blink.
    34. 34)
      • 9. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 583596.
    35. 35)
      • 13. Wanli, M., Wynter, L.: ‘Method and apparatus for providing navigational guidance using the states of traffic signal’. US Patent 9,599,488, 2017.
    36. 36)
      • 20. Wang, T., Gong, S., Zhu, X., et al: ‘Person re-identification by video ranking’. 13th European Conf. on Computer Vision, ECCV, 2014, pp. 688703.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smc.2019.0034
Loading

Related content

content/journals/10.1049/iet-smc.2019.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address