Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Investigating the information value of different sources of evidence of developers’ expertise for bug assignment in open-source projects

Bug assignment (BA), the process of ranking developers according to their potential ability to fix a given bug, is an important software-engineering task. BA usually requires the development of an expertise profile for each developer, and formulation of a similarity metric to estimate the relevance of developers to the bug. This needs us to answer the following question: ‘what is the information value of various contributions of developers in BA research?’ We address this question by making the following contributions. (i) We enhance the expertise metric of our prior work, vocabulary and time-based BA, to consider information regarding various sources of expertise with different importance. We show that this can improve the effectiveness of bug-assignment process. (ii) Using this ‘Multisource’ expertise metric, we investigate the information value of different pieces of information in open-source repositories for BA. We show that in addition to bug-fixing contributions, other technical and even social contributions of developers within the version-control system are useful information for BA. (iii) We provide a curated, up-to-date data set including technical information of 13 popular open-source projects in Github. To the best of our knowledge, this is the most comprehensive data set, currently available for bug-assignment research.

References

    1. 1)
      • 20. Canfora, G., Cerulo, L.: ‘Supporting change request assignment in open source development’. Proc. of the 2006 ACM Symp. on Applied Computing, Dijon, France, 2006, pp. 17671772.
    2. 2)
      • 22. Cavalcanti, Y.C., Machado, I.d.C., Neto, P.A., et al: ‘Combining rule-based and information retrieval techniques to assign software change requests’. Proc. of the 29th ACM/IEEE Int. Conf. on Automated Software Engineering, Vasteras, Sweden, 2014, pp. 325330.
    3. 3)
      • 15. Jeong, G., Kim, S., Zimmermann, T.: ‘Improving bug triage with bug tossing graphs’. Proc. of the 7th Joint Meeting of the European Software Engineering Conf. and the ACM SIGSOFT Symp. on The Foundations of Software Engineering. ESEC/FSE ‘09, Amsterdam, The Netherlands, 2009, pp. 111120.
    4. 4)
      • 29. Shokripour, R., Anvik, J., Kasirun, Z.M., et al: ‘Improving automatic bug assignment using time-metadata in term-weighting’, IET Softw., 2014, 8, (6), pp. 269278.
    5. 5)
      • 33. Sajedi-Badashian, A., Hindle, A., Stroulia, E.: ‘Crowdsourced bug triaging’. ICSME ‘15, Bremen, Germany, 2015, pp. 506510.
    6. 6)
      • 18. Shokripour, R., Anvik, J., Kasirun, Z.M., et al: ‘A time-based approach to automatic bug report assignment’, J. Syst. Softw., 2015, 102, pp. 109122.
    7. 7)
      • 3. Tamrawi, A., Nguyen, T.T., Al-Kofahi, J., et al: ‘Fuzzy set-based automatic bug triaging: NIER track’. 2011 33rd Int. Conf. on Software Engineering (ICSE), Honolulu, HI, USA, 2011, pp. 884887.
    8. 8)
      • 35. Zanjani, M.B., Kagdi, H., Bird, C.: ‘Using developer-interaction trails to triage change requests’. Proc. of the 12th Working Conf. on Mining Software Repositories, Florence, Italy, 2015, pp. 8898.
    9. 9)
      • 31. Craswell, N., Robertson, S., Zaragoza, H., et al: ‘Relevance weighting for query independent evidence’. Proc. of the 28th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, Salvador, Brazil, 2005, pp. 416423.
    10. 10)
      • 2. Bhattacharya, P., Neamtiu, I.: ‘Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging’. 2010 IEEE Int. Conf. on Software Maintenance (ICSM), Timisoara, Romania, 2010, pp. 110.
    11. 11)
      • 12. Hu, H., Zhang, H., Xuan, J., et al: ‘Effective bug triage based on historical bugfix information’. 2014 IEEE 25th Int. Symp. on Software Reliability Engineering (ISSRE), Naples, Italy, 2014, pp. 122132.
    12. 12)
      • 19. Čubranić, D., Murphy, G.C.: ‘Automatic bug triage using text categorization’. SEKE 2004: Proc. of the Sixteenth Int. Conf. on Software Engineering & Knowledge Engineering, Banff, Alberta, Canada, 2004, pp. 9297.
    13. 13)
      • 8. Aljarah, I., Banitaan, S., Abufardeh, S., et al: ‘Selecting discriminating terms for bug assignment: a formal analysis’. Proc. of the 7th Int. Conf. on Predictive Models in Software Engineering, Banff, Alberta Canada, 2011, p. 12.
    14. 14)
      • 21. Bhattacharya, P., Neamtiu, I., Shelton, C.R.: ‘Automated, highly-accurate, bug assignment using machine learning and tossing graphs’, J. Syst. Softw., 2012, 85, (10), pp. 22752292.
    15. 15)
      • 23. Cavalcanti, Y.C., do Carmo Machado, I., Neto, P.A.d.M.S., et al: ‘Towards semi-automated assignment of software change requests’, J. Syst. Softw., 2016, 115, pp. 82101.
    16. 16)
      • 5. Shokripour, R., Kasirun, Z.M., Zamani, S., et al: ‘Automatic bug assignment using information extraction methods’. 2012 Int. Conf. on Advanced Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 2012, pp. 144149.
    17. 17)
      • 34. Sajedi-Badashian, A., Hindle, A., Stroulia, E.: ‘Crowdsourced bug triaging: leveraging Q&A platforms for bug assignment’. Proc. of 19th Int. Conf. on Fundamental Approaches to Software Engineering (FASE). FASE ‘16, Eindhoven, The Netherlands, 2016, pp. 231248.
    18. 18)
      • 1. Matter, D., Kuhn, A., Nierstrasz, O.: ‘Assigning bug reports using a vocabulary-based expertise model of developers’. 6th IEEE Int. Working Conf. on Mining Software Repositories, 2009. MSR'09, Vancouver, BC, Canada, 2009, pp. 131140.
    19. 19)
      • 26. Sajedi-Badashian, A., Stroulia, E.: ‘Guidelines for evaluating bug-assignment research’, J. Softw., Evol. Process, 2020, 32, p. e2250. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2250.
    20. 20)
      • 24. Zhang, W., Wang, S., Wang, Q.: ‘BAHA: a novel approach to automatic bug report assignment with topic modeling and heterogeneous network analysis’, Chin. J. Electron., 2016, 25, (6), pp. 10111018.
    21. 21)
      • 11. Anvik, J., Hiew, L., Murphy, G.C.: ‘Who should fix this bug?’. Proc. of the 28th Int. Conf. on Software Engineering, Shanghai, People's Republic of China, 2006, pp. 361370.
    22. 22)
      • 28. Cavalcanti, Y.C., Mota Silveira Neto, P.A., Machado, I.d.C., et al: ‘Challenges and opportunities for software change request repositories: a systematic mapping study’, J. Softw., Evol. Process, 2014, 26, (7), pp. 620653.
    23. 23)
      • 30. Blanco, R., Lioma, C.: ‘Graph-based term weighting for information retrieval’, Inf. Retr., 2012, 15, (1), pp. 5492.
    24. 24)
      • 25. Sun, X., Yang, H., Xia, X., et al: ‘Enhancing developer recommendation with supplementary information via mining historical commits’, J. Syst. Softw., 2017, 134, pp. 355368.
    25. 25)
      • 17. Sajedi-Badashian, A., Stroulia, E.: ‘Vocabulary and time based bug-assignment: a recommender system for open-source projects’, J. Softw., Pract. Exp., 2020, 50, pp. 15391564. Available at https://onlinelibrary.wiley.com/doi/10.1002/spe.2830.
    26. 26)
      • 4. Xie, X., Zhang, W., Yang, Y., et al: ‘DRETOM: developer recommendation based on topic models for bug resolution’. Proc. of the 8th Int. Conf. on Predictive Models in Software Engineering, Lund, Sweden, 2012, pp. 1928.
    27. 27)
      • 32. Stack Exchange Inc., Archive, T.I. (eds.): ‘Stack exchange data dump’ (The Internet Archive, San Francisco, USA, 2016). Available at https://archive.org/details/stackexchange.
    28. 28)
      • 14. Anjali, , Mohan, D., Sardana, N., et al: ‘Visheshagya: time based expertise model for bug report assignment’. 2016 Ninth Int. Conf. on Contemporary Computing (IC3), Noida, India, 2016, pp. 16.
    29. 29)
      • 27. Manning, C.D., Raghavan, P., Schütze, H.: ‘Introduction to information retrieval’ (Cambridge University Press, UK, 2008).
    30. 30)
      • 10. Zhang, W., Wang, S., Wang, Q.: ‘KSAP: an approach to bug report assignment using KNN search and heterogeneous proximity’, Inf. Softw. Technol., 2016, 70, pp. 6884.
    31. 31)
      • 6. Zhang, T., Chen, J., Yang, G., et al: ‘Towards more accurate severity prediction and fixer recommendation of software bugs’, J. Syst. Softw., 2016, 117, pp. 166184.
    32. 32)
      • 16. Wu, H., Liu, H., Ma, Y.: ‘Empirical study on developer factors affecting tossing path length of bug reports’, IET Softw., 2018, 12, (3), pp. 258270.
    33. 33)
      • 7. Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., et al: ‘Fuzzy set and cache-based approach for bug triaging’. Proc. of the 19th ACM SIGSOFT Symp. and the 13th European Conf. on Foundations of Software Engineering, Szeged, Hungary, 2011, pp. 365375.
    34. 34)
      • 9. Khatun, A., Sakib, K.: ‘A bug assignment technique based on bug fixing expertise and source commit recency of developers’. 2016 19th Int. Conf. on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2016, pp. 592597.
    35. 35)
      • 13. Hossen, M.K., Kagdi, H., Poshyvanyk, D.: ‘Amalgamating source code authors, maintainers, and change proneness to triage change requests’. Proc. of the 22nd Int. Conf. on Program Comprehension, Hyderabad, India, 2014, pp. 130141.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2019.0384
Loading

Related content

content/journals/10.1049/iet-sen.2019.0384
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address