Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Predicting co-change probability in software applications using historical metadata

It is quite challenging to track the after-effects of changes with increased dependencies among classes while making a change in software applications. Software change impact analysis aims to identify classes affected by a change in software applications. In recent years, researchers have found that revision history has great potential for identifying evolutionary coupling. The two main factors affecting the prediction results are the length and the age of change history considered for deriving dependencies. The effect of age of change history on co-change prediction results in software applications is empirically studied by varying the weightage of change commits. The results indicate that the older commits have less influence in deriving dependent classes than the newer ones. The proposed approach is useful for software effort estimation and identifying dependencies during the software development, testing, and maintenance phase.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 41. ‘QuantLib’. Available at https://sourceforge.net/projects/quantlib/, accessed 01 July 2020.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 29. Agrawal, A., Singh, R.K.: ‘Identification of co-change patterns in software evolution’. Proc. IEEE 8th Int. Conf. on Reliability, Infocom Technologies and Optimization, New Delhi, India, June 2020.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 46. ‘Understand’. Available at https://scitools.com/, accessed 01 July 2020.
    16. 16)
      • 36. ‘Jmol’. Available at https://sourceforge.net/projects/jmol/, accessed 01 April 2019.
    17. 17)
      • 43. ‘MeGUI’. Available at https://sourceforge.net/projects/megui/, accessed 01 July 2020.
    18. 18)
      • 8. Shi, H.Q., Wang, Y.B., Yuan, Y., et al: ‘Analyzing software change impact based on machine learning’, US 2020/0034135, Jan 2020.
    19. 19)
    20. 20)
      • 31. ‘easyROC’. Available at http://www.biosoft.hacettepe.edu.tr/easyROC/, accessed 01 July 2020.
    21. 21)
    22. 22)
      • 34. ‘SwingME’. Available at https://sourceforge.net/projects/swingme/, accessed 16 March 2019.
    23. 23)
      • 35. ‘LogicalDoc’. Available at https://sourceforge.net/projects/logicaldoc/, accessed 16 March 2019.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 40. ‘Task Coach’. Available at https://sourceforge.net/projects/taskcoach/, accessed 01 July 2020.
    28. 28)
    29. 29)
      • 38. ‘SmartBody’. Available at https://sourceforge.net/projects/smartbody/, accessed 01 June 2020.
    30. 30)
    31. 31)
      • 32. ‘LDAP SDK’. Available at https://sourceforge.net/projects/ldap-sdk/, accessed 16 March 2019.
    32. 32)
      • 47. ‘JASP’. Available at https://jasp-stats.org/, accessed 01 July 2020.
    33. 33)
      • 1. Bohner, S., Arnold, R.: ‘Software change impact analysis’ (IEEE Computer Society Press Los Alamitos, CA, USA, 1996).
    34. 34)
    35. 35)
    36. 36)
      • 39. ‘Render Farm Manager’. Available at https://sourceforge.net/projects/cgru/, accessed 01 June 2020.
    37. 37)
    38. 38)
    39. 39)
      • 33. ‘Pdfsam’. Available at https://sourceforge.net/projects/pdfsam/, accessed 01 April 2019.
    40. 40)
    41. 41)
    42. 42)
      • 44. ‘DirectShow’. Available at https://sourceforge.net/projects/directshownet, accessed 01 July 2020.
    43. 43)
      • 42. ‘Freeimage’. Available at https://sourceforge.net/projects/freeimage/, accessed 16 March 2019.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 37. ‘Ghost Commander’. Available at https://sourceforge.net/projects/ghostcommander/, accessed 16 March 2019.
    48. 48)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2019.0368
Loading

Related content

content/journals/10.1049/iet-sen.2019.0368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address