Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Probabilistic analysis of QoS-aware service composition with explicit environment models

In service composition, quality-of-service (QoS) represents a crucial indicator for the policy adoption. Existing composition strategies rarely address the influence of the environment, which may influence QoS and thus lead to sub-optimal composition policies in a dynamic environment. In this study, a model-based service composition approach is proposed. Given the user request, it is possible to first find a set of matching abstract web services (AWSs), and then pull relevant concrete web services (CWSs) based on the AWSs. The set of CWSs can be modelled as a Markov decision process (MDP). In addition, the authors model the environment as a fully probabilistic system, capturing changes of environment probabilistically. The environment model can be further composed of the MDP from the service models, obtaining a monolithic MDP. They demonstrate how the probabilistic verification techniques can be used to find the optimal service selection strategy against their QoS and the environment change. A distinguishing feature of their approach is that the QoS, as well as the dynamic of environment change, is made parametric so that the formal analysis is adaptive to the environment which is of paramount importance for autonomous and self-adaptive systems. Examples and experiments confirm the feasibility of their approach.

References

    1. 1)
      • 8. Zhang, P., Zhuang, Y., Leung, H., et al: ‘A novel QoS monitoring approach sensitive to environmental factors’. 2015 IEEE Int. Conf. on Web Services (ICWS), New York, NY, USA, 27 June – 2 July 2015, pp. 145152.
    2. 2)
      • 34. Baier, C., Katoen, J.: ‘Principles of model checking’ (MIT Press, Cambridge, MA, USA, 2008).
    3. 3)
      • 36. Wu, Z., Gomadam, K., Ranabahu, A., et al: ‘Automatic composition of semantic web services using process mediation’. ICEIS 2007 – Proc. Ninth Int. Conf. on Enterprise Information Systems, Volume SAIC, Funchal, Madeira, Portugal, June 2007, pp. 453462.
    4. 4)
      • 35. Yu, T., Lin, K.: ‘A broker-based framework for QoS-aware web service composition’. 2005 IEEE Int. Conf. on e-Technology, e-Commerce, and e-Services (EEE 2005), Hong Kong, China, 29 March–1 April 2005, pp. 2229.
    5. 5)
      • 3. Lemos, A.L., Daniel, F., Benatallah, B.: ‘Web service composition: a survey of techniques and tools’, ACM Comput. Surv., 2016, 48, (3), pp. 33:133:41.
    6. 6)
      • 13. Wang, P., Liu, T., Zhan, Y., et al: ‘A Bayesian Nash equilibrium of QoS-aware web service composition’. 2017 IEEE Int. Conf. on Web Services (ICWS), Honolulu, HI, USA, June 2017, pp. 676683.
    7. 7)
      • 26. Zhang, W., Sun, H., Liu, X., et al: ‘Temporal QoS-aware web service recommendation via non-negative tensor factorization’. Proc. 23rd Int. Conf. on World Wide Web ACM, Seoul, Korea, April 2014, pp. 585596.
    8. 8)
      • 38. Wang, H., Wang, L., Yu, Q., et al: ‘A proactive approach based on online reliability prediction for adaptation of service-oriented systems’, J. Parallel Distrib. Comput., 2018, 114, pp. 7084.
    9. 9)
      • 20. Bashari, M., Bagheri, E., Du, W.: ‘Self-adaptation of service compositions through product line reconfiguration’, J. Syst. Softw., 2018, 144, pp. 84105.
    10. 10)
      • 14. Ren, L., Wang, W., Xu, H.: ‘A reinforcement learning method for constraint-satisfied services composition’, IEEE Trans. Serv. Comput., 2017, pp. 114, DOI: 10.1109/TSC.2017.2727050.
    11. 11)
      • 10. Wang, H., Ma, P., Yu, Q., et al: ‘Combining quantitative constraints with qualitative preferences for effective non-functional properties-aware service composition’, J. Parallel Distrib. Comput., 2017, 100, pp. 7184.
    12. 12)
      • 19. Moustafa, A., Zhang, M.: ‘Multi-objective service composition using reinforcement learning’. Int. Conf. on Service-Oriented Computing, Berlin, Germany, December 2013, pp. 298312.
    13. 13)
      • 33. Kwiatkowska, M., Norman, G., Parker, D.: ‘Prism 4.0: verification of probabilistic real-time systems’, Lect. Notes Comput. Sci., 2011, 6806, pp. 585591.
    14. 14)
      • 21. Tilsner, M., Fiech, A., Zhan, G., et al: ‘Patterns for service composition’. Fourth Int. Conf. on Computer Science & Software Engineering, C3S2E 2011, Montreal, QC, Canada, May 2011, pp. 133137,.
    15. 15)
      • 17. Yu, Y., Ma, H., Zhang, M.: ‘An adaptive genetic programming approach to QoS-aware web services composition’. Proc. IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, June 2013, pp. 17401747.
    16. 16)
      • 2. Chen, W., Paik, I.: ‘Toward better quality of service composition based on a global social service network’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (5), pp. 14661476.
    17. 17)
      • 16. Ali, N., Solís, C.: ‘Self-adaptation to mobile resources in service oriented architecture’. 2015 IEEE Int. Conf. on Mobile Services, MS 2015, New York City, NY, USA,  27 June–2 July 2015, pp. 407414.
    18. 18)
      • 15. Rodriguez Mier, P., Mucientes, M., Lama, M.: ‘Hybrid optimization algorithm for large-scale QoS-aware service composition’, IEEE Trans. Serv. Comput., 2017, 10, (4), pp. 547559.
    19. 19)
      • 40. Hahn, E.M., Han, T., Zhang, L.: ‘Synthesis for PCTL in parametric Markov decision processes’. Proc. 3rd NASA Formal Methods Symp. (NFM'11), Pasadena, CA, USA, April 2011, pp. 146161.
    20. 20)
      • 12. Zhou, Y., Ge, J., Zhang, P., et al: ‘Model based verification of dynamically evolvable service oriented systems’, Sci. China Inf. Sci., 2016, 59, (3), p. 32101.
    21. 21)
      • 29. Xiong, W., Wu, Z., Li, B., et al: ‘A learning approach to QoS prediction via multidimensional context’. 2017 IEEE Int. Conf. on Web Services, ICWS 2017, Honolulu, HI, USA, June 2017, pp. 164171.
    22. 22)
      • 7. Silic, M., Delac, G., Srbljic, S.: ‘Prediction of atomic web services reliability for QoS-aware recommendation’, IEEE Trans. Serv. Comput., 2015, 8, (3), pp. 425438.
    23. 23)
      • 22. Aguilar Saven, R.S.: ‘Business process modelling: review and framework’, Int. J. Prod. Econ., 2004, 90, pp. 129149.
    24. 24)
      • 31. Hansson, H., Jonsson, B.: ‘A logic for reasoning about time and reliability’, Form. Asp. Comput., 1994, 6, (5), pp. 512535.
    25. 25)
      • 18. Jungmann, A., Mohr, F.: ‘An approach towards adaptive service composition in markets of composed services’, J. Internet Serv. Appl., 2015, 6, (1), p. 5.
    26. 26)
      • 25. Kheldoun, A., Barkaoui, K., Ioualalen, M.: ‘Formal verification of complex business processes based on high-level Petri nets’, Inf. Sci., 2017, 385, pp. 3954,.
    27. 27)
      • 6. Mabrouk, N.B., Beauche, S., Kuznetsova, E., et al: ‘QoS-aware service composition in dynamic service oriented environments’. ACM/IFIP/USENIX Int. Conf. on Distributed Systems Platforms and Open Distributed Processing, Urbana, IL, USA, 30 November – 4 October 2009, pp. 123142.
    28. 28)
      • 32. Baier, C., Haverkort, B.R., Hermanns, H., et al: ‘Model checking continuous-time Markov chains by transient analysis’. 12th Int. Conf. on Computer Aided Verification, CAV 2000, Chicago, IL, USA, July 2000, pp. 358372,.
    29. 29)
      • 23. Wong, P.Y.H., Gibbonsa, J.: ‘Formalisations and applications of BPMN’, Sci. Comput. Program., 2011, 76, pp. 633650.
    30. 30)
      • 24. Corradini, F., Fornari, F., Polini, A., et al: ‘BProVe: tool support for business process verification’. Proc. 32nd IEEE/ACM Int. Conf. on Automated Software Engineering, ASE 2017, IEEE Computer Society, 2017, Urbana, IL, USA, October 30–November 03, 2017, pp. 937942, Available at https://doi.org/10.1109/ASE.2017.8115708.
    31. 31)
      • 9. Wang, H., Wu, Q., Chen, X., et al: ‘Adaptive and dynamic service composition via multi-agent reinforcement learning’. 2014 IEEE Int. Conf. on Web Services (ICWS), Anchorage, AK, USA, 27 June–2 July 2014, pp. 447454.
    32. 32)
      • 5. Hayyolalam, V., Kazem, A.A.P.: ‘A systematic literature review on QoS-aware service composition and selection in cloud environment’, J. Netw. Comput. Appl., 2018, 110, pp. 5274.
    33. 33)
      • 39. Hahn, E.M., Hermanns, H., Zhang, L.: ‘Probabilistic reachability for parametric Markov models’, Int. J. Softw. Tools for Technol. Transfer, 2011, 13, (1), pp. 319.
    34. 34)
      • 11. Canfora, G., Di Penta, M., Esposito, R., et al: ‘An approach for QoS-aware service composition based on genetic algorithms’. Proc. 7th Annual Conf. on Genetic and Evolutionary Computation, Washington DC, USA, June 2005, pp. 10691075.
    35. 35)
      • 28. Wu, C., Qiu, W., Wang, X., et al: ‘Time-aware and sparsity-tolerant QoS prediction based on collaborative filtering’. IEEE Int. Conf. on Web Services, ICWS 2016, San Francisco, CA, USA,  27 June–2 July 2016, pp. 637640.
    36. 36)
      • 1. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., et al: ‘Web services composition: a decades overview’, Inf. Sci., 2014, 280, pp. 218238.
    37. 37)
      • 37. Zhu, J., He, P., Xie, Q., et al: ‘Carp: context-aware reliability prediction of black-box web services’. 2017 IEEE Int. Conf. on Web Services (ICWS), Honolulu, HI, USA, June 2017, pp. 1724.
    38. 38)
      • 27. Madi, B.M.A., Sheng, Q.Z., Yao, L., et al: ‘PLMwsp: probabilistic latent model for web service QoS prediction’. IEEE Int. Conf. on Web Services, ICWS 2016, San Francisco, CA, USA,  27 June–2 July 2016, pp. 623630.
    39. 39)
      • 4. Zhou, Y., Chen, T.: ‘Software adaptation in an open environment: a software architecture perspective. (CRC Press, Boca Raton, FL, USA, 2017).
    40. 40)
      • 30. Trang, M.X., Murakami, Y., Ishida, T.: ‘Policy-aware service composition: predicting parallel execution performance of composite services’, IEEE Trans. Serv. Comput., 2018, 11, (4), pp. 602615.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2019.0152
Loading

Related content

content/journals/10.1049/iet-sen.2019.0152
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address