http://iet.metastore.ingenta.com
1887

Optical PUFs as physical root of trust for blockchain-driven applications

Optical PUFs as physical root of trust for blockchain-driven applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In an environment where cyber attacks are increasing, both in frequency and complexity, novel ways to shield data, users, and procedures have to be envisioned. Physical unclonable functions (PUFs) are the physical equivalent of one-way mathematical transformations with the exception that their inherent physical complexity renders them resilient to cloning. One interesting deployment scenario includes PUFs as random key generators. The deterministic nature of their operation alleviates the necessity to store the keys in non-volatile means. Along the same lines, blockchain is inherently resistant to modification of the data once stored while their overall security depends on the quality and secrecy of users’ keys. Here, the authors propose a novel optical PUF implementation that can be combined with private blockchain modalities in order to cyber-harden Internet of things ecosystems. PUF-related experimental results are presented, alongside implementation scenarios.

References

    1. 1)
      • 1. Big data analytics | ibm analytics’. Available at https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.
    2. 2)
      • 2. Pappu, R., Recht, B., Taylor, J., et al: ‘Physical one-way functions’, Science, 2002, 297, (5589), pp. 20262030.
    3. 3)
      • 3. Gassend, B., Clarke, D., Van Dijk, M., et al: ‘Silicon physical random functions’. Proc. of the 9th ACM Conf. on Computer and Communications Security ACM, 2002, pp. 148160.
    4. 4)
      • 4. Nakamoto, S.: ‘Bitcoin: a peer-to-peer electronic cash system’, 2008.
    5. 5)
      • 5. Swan, M.: ‘Blockchain: blueprint for a new economy’ (O'Reilly Media, Inc., USA, 2015).
    6. 6)
      • 6. Akriotou, M., Mesaritakis, C., Grivas, E., et al: ‘Random number generation from a secure photonic physical unclonable hardware module’. Proc. of the 2018 ISCIS Security Workshop, Imperial College London, 2018.
    7. 7)
      • 7. Rührmair, U., Devadas, S., Koushanfar, F.: ‘Security based on physical unclonability and disorder’, in Tehranipoor, M., Wang, C. (Eds): ‘Introduction to hardware security and trust’ (Springer, USA, 2012), pp. 65102.
    8. 8)
      • 8. Suh, G.E., Devadas, S.: ‘Physical unclonable functions for device authentication and secret key generation’. 2007 44th ACM/IEEE Design Automation Conf. DAC'07, 2007, pp. 914.
    9. 9)
      • 9. Tuyls, P.: ‘Towards hardware-intrinsic security: foundations and practice’ (Springer Science & Business Media, Germany, 2010).
    10. 10)
      • 10. Kursawe, K., Sadeghi, A.-R., Schellekens, D., et al: ‘Reconfigurable physical unclonable functions-enabling technology for tamper-resistant storage’, 2009.
    11. 11)
      • 11. Qiu, P., Lyu, Y., Zhai, D., et al: ‘Physical unclonable functions-based linear encryption against code reuse attacks’. 2016 53nd ACM/EDAC/IEEE Design Automation Conf. (DAC), 2016, pp. 16.
    12. 12)
      • 12. Lim, D., Lee, J.W., Gassend, B., et al: ‘Extracting secret keys from integrated circuits’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2005, 13, (10), pp. 12001205.
    13. 13)
      • 13. Holcomb, D.E., Burleson, W.P., Fu, K., et al: ‘Initial sram state as a fingerprint and source of true random numbers for rfid tags’. Proc. of the Conf. on RFID Security, 2007, vol. 7, no. 2, p. 01.
    14. 14)
      • 14. Liu, R., Wu, H., Pang, Y., et al: ‘Experimental characterization of physical unclonable function based on 1 kB resistive random access memory arrays’, IEEE Electron Device Lett., 2015, 36, (12), pp. 13801383.
    15. 15)
      • 15. Chen, A.: ‘Utilizing the variability of resistive random access memory to implement reconfigurable physical unclonable functions’, IEEE Electron Device Lett., 2015, 36, (2), pp. 138140.
    16. 16)
      • 16. Becker, G.T.: ‘The gap between promise and reality: on the insecurity of xor arbiter pufs’. Int. Workshop on Cryptographic Hardware and Embedded Systems, 2015, pp. 535555.
    17. 17)
      • 17. Cao, Y., Zhang, L., Zalivaka, S.S., et al: ‘Cmos image sensor based physical unclonable function for coherent sensor-level authentication’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (11), pp. 26292640.
    18. 18)
      • 18. Wang, W.-C., Yona, Y., Diggavi, S., et al: ‘Ledpuf: stability-guaranteed physical unclonable functions through locally enhanced defectivity’. 2016 IEEE Int. Symp. on Hardware Oriented Security and Trust (HOST), 2016, pp. 2530.
    19. 19)
      • 19. Aman, M. N., Chua, K. C., Sikdar, B.: ‘Position paper: physical unclonable functions for iot security’. Proc. of the 2nd ACM Int. Workshop on IoT Privacy, Trust, and Security, 2016, pp. 1013.
    20. 20)
      • 20. Zhang, Y., Wang, P., Li, G., et alDesign of power-up and arbiter hybrid physical unclonable functions in 65 nm cmos’, 2015 IEEE 11th Int. Conf. on ASIC (ASICON), 2015, pp. 14.
    21. 21)
      • 21. Aysu, A., Schaumont, P.: ‘Hardware/software co-design of physical unclonable function based authentications on fpgas’, Microprocess. Microsyst., 2015, 39, (7), pp. 589597.
    22. 22)
      • 22. Marukame, T., Schmid, A.: ‘Bit-flipping ldpc under noise conditions and its application to physically unclonable functions’. 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS), 2016, pp. 11141117.
    23. 23)
      • 23. Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., et al: ‘Efficient attacks on robust ring oscillator puf with enhanced challenge-response set’. Proc. of the 2015 Design, Automation & Test in Europe Conf. & Exhibition, 2015, pp. 641646.
    24. 24)
      • 24. Hospodar, G., Maes, R., Verbauwhede, I.: ‘Machine learning attacks on 65 nm arbiter pufs: accurate modeling poses strict bounds on usability’. WIFS, 2012, pp. 3742.
    25. 25)
      • 25. Rührmair, U., Sehnke, F., Sölter, J., et al: ‘Modeling attacks on physical unclonable functions’. Proc. of the 17th ACM Conf. on Computer and Communications Security, 2010, pp. 237249.
    26. 26)
      • 26. Tajik, S., Lohrke, H., Ganji, F., et al: ‘Laser fault attack on physically unclonable functions’. 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2015, pp. 8596.
    27. 27)
      • 27. Mahmoud, A., Rührmair, U., Majzoobi, M., et al: ‘Combined modeling and side channel attacks on strong pufs’, IACR Cryptology ePrint Archive, 2013, 2013, p. 632.
    28. 28)
      • 28. Rührmair, U., Xu, X., Sölter, J., et al: ‘Efficient power and timing side channels for physical unclonable functions’. Int. Workshop on Cryptographic Hardware and Embedded Systems, 2014, pp. 476492.
    29. 29)
      • 29. Gao, Y., Ranasinghe, D.C., Al-Sarawi, S.F., et al: ‘Emerging physical unclonable functions with nanotechnology’, IEEE. Access., 2016, 4, pp. 6180.
    30. 30)
      • 30. Zhang, H., Tzortzakis, S.: ‘Robust authentication through stochastic femtosecond laser filament induced scattering surfaces’, Appl. Phys. Lett., 2016, 108, (21), p. 211107.
    31. 31)
      • 31. Gao, Y., Ranasinghe, D.C., Al-Sarawi, S.F., et al: ‘Memristive crypto primitive for building highly secure physical unclonable functions’, Sci. Rep., 2015, 5, p. 12785.
    32. 32)
      • 32. Smith, A.F., Patton, P., Skrabalak, S.E.: ‘Plasmonic nanoparticles as a physically unclonable function for responsive anti-counterfeit nanofingerprints’, Adv. Funct. Mater., 2016, 26, (9), pp. 13151321.
    33. 33)
      • 33. Grubel, B.C., Bosworth, B., Kossey, M., et al: ‘Secure authentication using the ultrafast response of chaotic silicon photonic microcavities’. CLEO: Science and Innovations, 2016, p. SF1F-2.
    34. 34)
      • 34. Rührmair, U., Hilgers, C., Urban, S., et al: ‘Optical pufs reloaded’, Eprint. Iacr.Org, 2013.
    35. 35)
      • 35. Buchanan, J.D., Cowburn, R.P., Jausovec, A.-V., et al: ‘Forgery: “fingerprinting” documents and packaging’, Nature, 2005, 436, (7050), p. 475.
    36. 36)
      • 36. Mesaritakis, C., Akriotou, M., Kapsalis, A., et al: ‘Physical unclonable function based on a multi-mode optical waveguide’, Sci. Rep., 2018, 8, (1), p. 9653.
    37. 37)
      • 37. Armknecht, F., Maes, R., Sadeghi, A.-R., et al: ‘A formalization of the security features of physical functions’. 2011 IEEE Symp. on Security and Privacy, 2011, pp. 397412.
    38. 38)
      • 38. Tuyls, P., Škoric, B., Kevenaar, T.: ‘Security with noisy data: on private biometrics, secure key storage and anti-counterfeiting’ (Springer Science & Business Media, UK, 2007).
    39. 39)
      • 39. Candès, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2018.5291
Loading

Related content

content/journals/10.1049/iet-sen.2018.5291
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address