Optical PUFs as physical root of trust for blockchain-driven applications

Optical PUFs as physical root of trust for blockchain-driven applications

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In an environment where cyber attacks are increasing, both in frequency and complexity, novel ways to shield data, users, and procedures have to be envisioned. Physical unclonable functions (PUFs) are the physical equivalent of one-way mathematical transformations with the exception that their inherent physical complexity renders them resilient to cloning. One interesting deployment scenario includes PUFs as random key generators. The deterministic nature of their operation alleviates the necessity to store the keys in non-volatile means. Along the same lines, blockchain is inherently resistant to modification of the data once stored while their overall security depends on the quality and secrecy of users’ keys. Here, the authors propose a novel optical PUF implementation that can be combined with private blockchain modalities in order to cyber-harden Internet of things ecosystems. PUF-related experimental results are presented, alongside implementation scenarios.

Related content

This is a required field
Please enter a valid email address