Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Architecting the Web of Things for the fog computing era

Fog computing paradigm is emerging after a decade's dominance of cloud-based system design and architecture. Now, instead of centralising the computation and coordination to remote services, these are deployed and distributed to all over physical surroundings and network nodes, including cloud services, smart gateways, and network edge devices. At the moment, the majority of the Internet of things (IoT) systems and software has built on top of open Web-based technologies. The authors assume that with the ever-growing number and heterogeneity of connected devices, it becomes ever-more crucial to have open standards that support interoperability and enable interactions. They review the current technological space for architecting Web technology-based IoT software in the coming era of fog computing. They focus on fundamental research challenges and discuss the emerging issues.

References

    1. 1)
      • 48. Hartke, K.: ‘The constrained RESTful application language (CoRAL)’, Technical Report, IETF, 10 2017.
    2. 2)
      • 9. Taivalsaari, A., Mikkonen, T.: ‘A roadmap to the programmable world: software challenges in the IoT era’, IEEE Softw., 2017, 34, pp. 7280.
    3. 3)
      • 39. Fielding, R.T., Taylor, R.N.: ‘Principled design of the modern Web architecture’, ACM Trans. Internet Technol. (TOIT), 2002, 2, (2), pp. 115150.
    4. 4)
      • 6. Dastjerdi, A.V., Buyya, R.: ‘Fog computing: helping the Internet of Things realize its potential’, Computer, 2016, 49, pp. 112116.
    5. 5)
      • 44. Martins, J. A., Mazayev, A., Correia, N.: ‘Hypermedia APIS for the Web of Things’, IEEE Access, 2017, 5, pp. 2005820067.
    6. 6)
      • 7. Taivalsaari, A., Mikkonen, T., Anttonen, M., et al: ‘The death of binary software: end user software moves to the Web’. Creating, Connecting and Collaborating Through Computing (C5), 2011 Ninth Int. Conf., January 2011, pp. 1723.
    7. 7)
      • 16. Cugola, G., Margara, A.: ‘Processing flows of information: from data stream to complex event processing’, ACM Comput. Surv. (CSUR), 2012, 44, (3), p. 15.
    8. 8)
      • 5. Bonomi, F., Milito, R., Zhu, J., et al: ‘Fog computing and its role in the Internet of Things’. Proc. First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 1316.
    9. 9)
      • 69. Alrawais, A., Alhothaily, A., Hu, C., et al: ‘Fog computing for the Internet of Things: security and privacy issues’, IEEE Internet Comput., 2017, 21, (2), pp. 3442.
    10. 10)
      • 34. Wen, Z., Yang, R., Garraghan, P., et al: ‘Fog orchestration for IoT services: issues, challenges and directions’, IEEE Internet Comput., 2017, 21, (2), pp. 1624.
    11. 11)
      • 32. Guinard, D., Trifa, V.: ‘Building the Web of Things: with examples in node. js and raspberry pi’ (Manning Publications Co., Greenwich, CT, USA, 2016).
    12. 12)
      • 19. Zhang, H., Diao, Y., Immerman, N.: ‘On complexity and optimization of expensive queries in complex event processing’. Proc. 2014 ACM SIGMOD Int. Conf. Management of data, 2014, pp. 217228.
    13. 13)
      • 46. Kelly, M.: ‘JSON hypertext application language (JSON-HAL)’, Technical Report, IETF, 11 2016.
    14. 14)
      • 3. Guinard, D., Trifa, V., Mattern, F., et al: ‘From the Internet of Things to the Web of Things: resource-oriented architecture and best practices’, in Uckelmann, D., Harrison, M., Michahelles, F. (Eds.): ‘Architecting the Internet of Things’ (Springer, Berlin, Heidelberg, 2011), pp. 97129.
    15. 15)
      • 37. Mäkitalo, N., Ometov, A., Kannisto, J., et al: ‘Safe and secure execution at the network edge: a framework for coordinating cloud, fog, and edge’, IEEE Softw., 2018.
    16. 16)
      • 10. Mäkitalo, N., Aaltonen, T., Mikkonen, T.: ‘Coordinating proactive social devices in a mobile cloud: lessons learned and a way forward’. Proc. Int. Conf. Mobile Software Engineering and Systems, MOBILESoft ‘16, New York, NY, USA, 2016, pp. 179188.
    17. 17)
      • 65. Sheng, Z., Yang, S., Yu, Y., et al: ‘A survey on the IETF protocol suite for the Internet of Things: standards, challenges, and opportunities’, IEEE Wirel. Commun., 2013, 20, pp. 9198.
    18. 18)
      • 17. Dayarathna, M., Perera, S.: ‘Recent advancements in event processing’, ACM Comput. Surv., 2018, 51, pp. 33:133:36.
    19. 19)
      • 47. Koster, M.: ‘Media types for hypertext sensor markup (HSML)’, Technical Report, IETF, 09 2017.
    20. 20)
      • 61. Madlmayr, G., Langer, J., Kantner, C., et al: ‘NFC devices: security and privacy’. Proc. Third Int. Conf. Availability, Reliability and Security, ARES 2008, Technical University of Catalonia, Barcelona, Spain, March 4–7 2008, pp. 642647.
    21. 21)
      • 45. Trifa, V., Guinard, D., Carrera, D.: ‘Web thing model W3C Member Submission’, Technical Report, World Wide Web Consortium (W3C), 04 2017.
    22. 22)
      • 64. Boyle, D., Newe, T.: ‘Securing wireless sensor networks: security architectures’, JNW, 2008, 3, (1), pp. 6577.
    23. 23)
      • 55. Fremantle, P., Scott, P.: ‘A survey of secure middleware for the Internet of Things’, Peer J. Comput. Sci., 2017, 3, p. e114.
    24. 24)
      • 66. Razzaque, M. A., Milojevic-Jevric, M., Palade, A., et al: ‘Middleware for Internet of Things: a survey’, IEEE Internet Things J., 2016, 3, (1), pp. 7095.
    25. 25)
      • 2. Guinard, D.: ‘Towards the Web of Things: Web mashups for embedded devices’. In MEM 2009 in Proc. WWW 2009, 2009.
    26. 26)
      • 51. Mendez, D.M., Papapanagiotou, I., Yang, B.: ‘Internet of Things: survey on security and privacy’, CoRR, vol. abs/1707.01879, 2017.
    27. 27)
      • 54. Granjal, J., Monteiro, E., Silva, J.S.: ‘Security for the Internet of Things: a survey of existing protocols and open research issues’, IEEE Commun. Surv. Tutorials, 2015, 17, (3), pp. 12941312.
    28. 28)
      • 50. El Jaouhari, S., Bouabdallah, A., Bonnin, J.-M.: ‘Security issues of the web of things’, in ‘Managing the web of things’ (Elsevier, Boston, MA, USA, 2017), pp. 389424.
    29. 29)
      • 31. Aggarwal, C.C., Ashish, N., Sheth, A.: ‘The Internet of Things: a survey from the data-centric perspective’, in ‘Managing and mining sensor data’ (Springer, Boston, MA, USA, 2013), pp. 383428.
    30. 30)
      • 38. Guinard, D., Trifa, V., Wilde, E.: ‘A resource oriented architecture for the Web of Things’, Internet of Things (IOT), 2010, pp. 18.
    31. 31)
      • 29. Pahl, C., Jamshidi, P.: ‘Microservices: a systematic mapping study’. CLOSER, 2016, vol. 1, pp. 137146.
    32. 32)
      • 28. Thönes, J.: ‘Microservices’, IEEE Softw., 2015, 32, pp. 116116.
    33. 33)
      • 68. I.J.I. Technology.: ‘ISO/IEC 20922:2016’, Standard, International Organization for Standardization (ISO), June 2016.
    34. 34)
      • 18. Randika, H., Martin, H., Sampath, D., et al: ‘Scalable fault tolerant architecture for complex event processing systems’. Advances in ICT for Emerging Regions (ICTer), 2010 Int. Conf., 2010, pp. 8696.
    35. 35)
      • 21. Soto, J.A.C., Jentsch, M., Preuveneers, D., et al: ‘CEML: mixing and moving complex event processing and machine learning to the edge of the network for IoT applications’. Proc. 6th Int. Conf. Internet of Things, IoT'16, New York, NY, USA, 2016, pp. 103110.
    36. 36)
      • 27. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., et al: ‘Microservices: yesterday, today, and tomorrow’, CoRR, vol. abs/1606.04036, 2016.
    37. 37)
      • 1. Stirbu, V.: ‘Towards a restful plug and play experience in the Web of Things’. 2008 IEEE Int. Conf. Semantic Computing, August 2008, pp. 512517.
    38. 38)
      • 12. Internet engineering task force (IETF), RFC 7540 – hypertext transfer protocol version 2 (HTTP/2), May 2015.
    39. 39)
      • 59. Internet of Things research study’. Available athttp://www8.hp.com/us/en/hp-news/press-release.html?id=1744676, 2015, accessed 30 November 2017.
    40. 40)
      • 67. OASIS Message Queuing Telemetry Transport (MQTT) TC: ‘MQTT Version 3.1.1’, Standard, Oasis, October 2014. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS Standard. Available at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.
    41. 41)
      • 49. Francis, B.: ‘Web thing API (unofficial draft)’, Technical Report, World Wide Web Consortium (W3C), 03 2018.
    42. 42)
      • 4. Tran, N.K., Sheng, Q.Z., Babar, M.A., et al: ‘Searching the Web OF Things: state of the art, challenges, and solutions’, ACM Comput. Surv., 2017, 50, pp. 55:155:34.
    43. 43)
      • 22. Mayer, R., Tariq, M.A., Rothermel, K.: ‘Minimizing communication overhead in window-based parallel complex event processing’. Proc. 11th ACM Int. Conf. Distributed and Event-based Systems, 2017, pp. 5465.
    44. 44)
      • 71. Ometov, A., Masek, P., Urama, J., et al: ‘Implementing secure network-assisted d2d framework in live 3GPP LTE deployment’. 2016 IEEE Int. Conf. Communications Workshops (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 749754.
    45. 45)
      • 43. Kis, Z., Nimura, K., Peintner, D., et al: ‘Web of Things (WoT) scripting API’, Technical Report, World Wide Web Consortium (W3C), 10 2017.
    46. 46)
      • 14. Gallidabino, A., Pautasso, C., Ilvonen, V., et al: ‘Architecting liquid software’, J. Web Eng., 2017, 16, (5&6), pp. 433470.
    47. 47)
      • 30. Mayer, S., Karam, D.S.: ‘A computational space for the Web of Things’. Proc. Third Int. Workshop on the Web of Things, 2012, p. 8.
    48. 48)
      • 26. Lewis, J., Fowler, M.: ‘Microservices’. Available athttps://martinfowler.com/articles/microservices.html, accessed March 2015.
    49. 49)
      • 58. Dragoni, N., Giaretta, A., Mazzara, M.: ‘The internet of hackable things’, CoRR, vol. abs/1707.08380, 2017.
    50. 50)
      • 63. Zafari, F., Papapanagiotou, I., Devetsikiotis, M., et al: ‘Enhancing the accuracy of ibeacons for indoor proximity-based services’. IEEE Int. Conf. Communications, ICC 2017, Paris, France, May 21–25 2017, pp. 17.
    51. 51)
      • 25. Francesco, P.D., Malavolta, I., Lago, P.: ‘Research on architecting microservices: trends, focus, and potential for industrial adoption’. 2017 IEEE Int. Conf. Software Architecture (ICSA), April 2017, pp. 2130.
    52. 52)
      • 56. Atamli, A., Martin, A.P.: ‘Threat-based security analysis for the Internet of Things’, 2014 Int. Workshop on Secure Internet of Things, SIoT 2014, Wroclaw, Poland, September 10, 2014, pp. 3543.
    53. 53)
      • 57. Dolev, D., Yao, A.C.: ‘On the security of public key protocols’, IEEE Trans. Inf. Theory, 1983, 29, (2), pp. 198207.
    54. 54)
      • 42. Koster, M.: ‘Web of Things (WoT) protocol binding templates’, Technical Report, World Wide Web Consortium (W3C), 10 2017.
    55. 55)
      • 35. Byers, C.C.: ‘Architectural imperatives for fog computing: use cases, requirements, and architectural techniques for fog-enabled IoT networks’, IEEE Commun. Mag., 2017, 55, (8), pp. 1420.
    56. 56)
      • 60. Zhao, K., Ge, L.: ‘A survey on the Internet of Things security’. Ninth Int. Conf. Computational Intelligence and Security, CIS 2013, EMEI Mountain, Sichan Province, China, December 14–15, 2013, pp. 663667.
    57. 57)
      • 62. Zafari, F., Papapanagiotou, I.: ‘Enhancing ibeacon based micro-location with particle filtering’. 2015 IEEE Global Communications Conf., GLOBECOM 2015, San Diego, CA, USA, December 6–10 2015, pp. 17.
    58. 58)
      • 41. Kaebisch, S., Kamiya, T.: ‘Web of Things (WoT) thing description’, Technical Report, World Wide Web Consortium (W3C), 09 2017.
    59. 59)
      • 20. Cugola, G., Margara, A.: ‘Deployment strategies for distributed complex event processing’, Computing, 2013, 95, (2), pp. 129156.
    60. 60)
      • 15. Luckham, D.: ‘The power of events’ (Addison-Wesley, Reading, 2002), vol. 204.
    61. 61)
      • 70. Ni, J., Zhang, K., Lin, X., et al: ‘Securing fog computing for Internet of Things applications: challenges and solutions’, IEEE Commun. Surv. Tutorials, 2017.
    62. 62)
      • 40. Kajimoto, K., Kovatsch, M., Davuluru, U.: ‘Web of Things (WoT) architecture’, Technical Report, World Wide Web Consortium (W3C), 09 2017.
    63. 63)
      • 8. Shi, W., Dustdar, S.: ‘The promise of edge computing’, Computer, 2016, 49, pp. 7881.
    64. 64)
      • 23. Starks, F., Plagemann, T.P., Kristiansen, S.: ‘DCEP-SIM: an open simulation framework for distributed CEP’. Proc. 11th ACM Int. Conf. Distributed and Event-based Systems, 2017, pp. 180190.
    65. 65)
      • 13. Bermbach, D., Pallas, F., Pérez, D.G., et al: ‘A research perspective on Fog computing’. Proc. 2nd Workshop on IoT Systems Provisioning & Management for Context-Aware Smart Cities, Springer, 2017.
    66. 66)
      • 24. Alshuqayran, N., Ali, N., Evans, R.: ‘A systematic mapping study in microservice architecture’. 2016 IEEE 9th Int. Conf. Service-Oriented Computing and Applications (SOCA), November 2016, pp. 4451.
    67. 67)
      • 36. Rahmani, A.M., Gia, T.N., Negash, B., et al: ‘Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach’, Future Gener. Comput. Syst., 2018, 78, pp. 641658.
    68. 68)
      • 33. Mahmud, R., Kotagiri, R., Buyya, R.: ‘Fog computing: a taxonomy, survey and future directions’, in ‘Internet of everything’ (Springer, Singapore, 2018), pp. 103130.
    69. 69)
      • 53. Alaba, F.A., Othman, M., Hashem, I.A.T., et al: ‘Internet of Things security: a survey’, J. Netw. Comput. Appl., 2017, 88, pp. 1028.
    70. 70)
      • 11. Fielding, R.T.: ‘REST: architectural styles and the design of network-based software architectures’. Doctoral dissertation, University of California, Irvine, 2000.
    71. 71)
      • 52. Yang, Y., Wu, L., Yin, G., et al: ‘A survey on security and privacy issues in internet-of-things’, IEEE Internet Things J., 2017, 4, (5), pp. 12501258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2017.0350
Loading

Related content

content/journals/10.1049/iet-sen.2017.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address