Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Description and reasoning for vague ontologies using logic programming

The Semantic Web ontologies can contain vague axioms, which means the knowledge about them is imprecise and then query answering will not possible due to the open world assumption if the necessary information is incomplete (there is an ignorance about information). An axiom description can be very exact (crisp axiom) or exact (fuzzy axiom) if its knowledge is complete, otherwise it is inexact (vague axiom) if its knowledge is incomplete. Here, the author proposes vagueness description with meta-level logic programming to describe vague ontologies. These vagueness descriptions are inputs to vagueness reasoning procedure implemented at meta-level, which is based on extended tableau algorithm. The extended tableau algorithm is intended to answer queries even with the presence of imprecise information.

References

    1. 1)
      • 31. Baader, F., Peñaloza, R.: ‘On the undecidability of fuzzy description logics with GCIs and product T-norm’. Frontiers of Combining Systems, 8th Int. Symp., FroCoS 2011, Saarbrücken, Germany, 5–7 October 2011(LNCS, 6989), pp. 5570.
    2. 2)
      • 21. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: ‘From SHIQ and RDF to OWL: the making of a web ontology language’, J. Web Semant., 2003, 1, (1), pp. 726.
    3. 3)
      • 5. Straccia, U.: ‘Foundations of fuzzy logic and semantic web languages’, ser. CRC Studies in Informatics Series (Chapman & Hall, Boca Raton, 2013).
    4. 4)
      • 10. Bobillo, F., Straccia, U.: ‘Fuzzy ontology representation using OWL 2’, Int. J. Approx. Reason., 2011, 52, pp. 10731094.
    5. 5)
      • 23. Baader, F., Hanschke, P.: ‘A scheme for integrating concrete domains into concept languages’. Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, Sydney, Australia, 24–30 August 1991, pp. 452457.
    6. 6)
      • 11. Lisi, F.A., Straccia, U.: ‘Dealing with incompleteness and vagueness in inductive logic programming’. 28th Italian Conf. on Computational Logic (CILC-13). CEUR Electronic Workshop Proc., 2013, vol. 1068, pp. 179193, available at http://ceur-ws.org/.
    7. 7)
      • 19. Bourahla, M.: ‘Reasoning over vague concepts’. Artificial Intelligence and Soft Computing – 14th Int. Conf., ICAISC 2015, Zakopane, Poland, 14–28 June 2015 (LNCS, 9120), pp. 591602.
    8. 8)
      • 6. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, (3), pp. 338353.
    9. 9)
      • 7. Zadeh, L.A.: ‘The concept of a linguistic variable and its application to approximate reasoning’, Inf. Sci., 1975, 8, (3), pp. 199249.
    10. 10)
      • 30. Borgwardt, S., Peñaloza, R.: ‘Undecidability of fuzzy description logics’. Principles of Knowledge Representation and Reasoning: Proc. of the Thirteenth Int. Conf., KR 2012, Rome, Italy, 10–14 June 2012.
    11. 11)
      • 16. Straccia, U.: ‘Fuzzy semantic web languages and beyond’. Advances in Artificial Intelligence: From Theory to Practice – 30th Int. Conf. on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, 27–30 June 2017 (LNCS, 10350), pp. 38.
    12. 12)
      • 18. Bobillo, F., Straccia, U.: ‘Generalizing type-2 fuzzy ontologies and type-2 fuzzy description logics’, Int. J. Approx. Reason., 2017, 87, pp. 4066.
    13. 13)
      • 12. Bobillo, F., Delgado, M., Gomez-Romero, J., et al: ‘Joining gödel and zadeh fuzzy logics in fuzzy description logics’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2012, 20, (4), pp. 475508.
    14. 14)
      • 20. Horrocks, I., Sattler, U.: ‘A tableaux decision procedure for SHOIQ’. IJCAI- 05, Proc. of the Nineteenth Int. Joint Conf. on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 448453.
    15. 15)
      • 3. Lukasiewicz, T.: ‘Uncertainty reasoning for the semantic web’, in Ianni, G., Lembo, D., Bertossi, L.E., et al (Eds.): ‘Reasoning web. Semantic interoperability on the web – 13th international summer school 2017, London, UK, July 7–11, 2017, tutorial lectures’ (Lecture Notes in Computer Science, 10370) (Springer International, Heidelberg, 2017), pp. 276291.
    16. 16)
      • 26. Euzenat, J., Shvaiko, P.: ‘Ontology matching’ (Springer-Verlag, New York, 2007).
    17. 17)
      • 17. Bobillo, F., Straccia, U.: ‘The fuzzy ontology reasoner fuzzydl’, Knowl.-Based Syst., 2016, 95, pp. 1234.
    18. 18)
      • 32. Baader, F., Borgwardt, S., Peñaloza, R.: ‘Decidability and complexity of fuzzy description logics’, KI, 2017, 31, (1), pp. 8590.
    19. 19)
      • 8. Pawlak, Z.: ‘Rough sets’, Int. J. Parallel Program., 1982, 11, (5), pp. 341356.
    20. 20)
      • 24. Bechhofer, S., van Harmelen, F., Hendler, J., et al: ‘OWL web ontology language reference’, W3C Recommendation, 10 February 2004. Available at http://www.w3.org/TR/owl-ref/.
    21. 21)
      • 15. Stefan, B., Peñaloza, R.: ‘Consistency reasoning in lattice-based fuzzy description logics’, Int. J. Approx. Reason., 2014, 55, (9), pp. 19171938.
    22. 22)
      • 27. Dentler, K., Cornet, R., ten Teije, A., et al: ‘Comparison of reasoners for large ontologies in the OWL 2 EL profile’, Semant. Web, 2011, 2, (2), pp. 7187.
    23. 23)
      • 14. Lukasiewicz, T., Straccia, U.: ‘Description logic programs under probabilistic uncertainty and fuzzy vagueness’, Int. J. Approx. Reason., 2009, 50, (6), pp. 837853.
    24. 24)
      • 29. Bobillo, F., Bou, F., Straccia, U.: ‘On the failure of the finite model property in some fuzzy description logics’, Fuzzy Sets Syst., 2011, 172, (1), pp. 112.
    25. 25)
      • 28. Cerami, M., Straccia, U.: ‘On the (un)decidability of fuzzy description logics under łukasiewicz T-norm’, Inf. Sci., 2013, 227, pp. 121.
    26. 26)
      • 13. Stoilos, G., Stamou, G., Pan, J.Z., et al: ‘Reasoning with very expressive fuzzy description logics’, J. Artif. Intell. Res., 2007, 30, pp. 273320.
    27. 27)
      • 25. Guo, Y., Pan, Z., Heflin, J.: ‘LUBM: a benchmark for OWL knowledge base systems’, J. Web Semant., 2005, 3, (2–3), pp. 158182.
    28. 28)
      • 22. Lutz, C.: ‘Description logics with concrete domains-a survey’. Advances in Modal Logic 4, Papers from the Fourth Conf. on ‘Advances in Modal logic’, Toulouse, France, October 2002, pp. 265296.
    29. 29)
      • 1. Lutz, C., Milicic, M.: ‘A tableau algorithm for DLs with concrete domains and GCIs’, J. Autom. Reasoning, 2007, 38, (1–3), pp. 227259.
    30. 30)
      • 9. Pawlak, Z., Polkowski, L., Skowron, A.: ‘Rough set theory’, inWiley encyclopedia of computer science and engineering, (John Wiley & Sons, Oxford2008).
    31. 31)
      • 4. Lukasiewicz, T., Straccia, U.: ‘Managing uncertainty and vagueness in description logics for the semantic web’, J. Web Semant., 2007, 6, (4), pp. 291308.
    32. 32)
      • 2. Horrocks, I., Sattler, U.: ‘A tableau decision procedure for SHOIQ’, J. Autom. Reasoning, 2007, 39, (39–3), pp. 249276.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2017.0226
Loading

Related content

content/journals/10.1049/iet-sen.2017.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address