Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Discover deeper bugs with dynamic symbolic execution and coverage-based fuzz testing

Discover deeper bugs with dynamic symbolic execution and coverage-based fuzz testing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Coverage-based fuzz testing and dynamic symbolic execution are both popular program testing techniques. However, on their own, both techniques suffer from scalability problems when considering the complexity of modern software. Hybrid testing methods attempt to mitigate these problems by leveraging dynamic symbolic execution to assist fuzz testing. Unfortunately, the efficiency of such methods is still limited by specific program structures and the schedule of seed files. In this study, the authors introduce a novel lazy symbolic pointer concretisation method and a symbolic loop bucket optimisation to mitigate path explosion caused by dynamic symbolic execution in hybrid testing. They also propose a distance-based seed selection method to rearrange the seed queue of the fuzzer engine in order to achieve higher coverage. They implemented a prototype and evaluate its ability to find vulnerabilities in software and cover new execution paths. They show on different benchmarks that it can find more crashes than other off-the-shelf vulnerability detection tools. They also show that the proposed method can discover 43% more unique paths than vanilla fuzz testing.

References

    1. 1)
      • 31. Cha, S.K., Avgerinos, T., Rebert, A., et al: ‘Unleashing mayhem on binary code’. 2012 IEEE Symp. on Security and Privacy (SP), San Francisco, CA, USA, 2012, pp. 380394.
    2. 2)
      • 23. Cadar, C., Sen, K.: ‘Symbolic execution for software testing: three decades later’, Commun. ACM, 2013, 56, (2), pp. 8290.
    3. 3)
      • 57. Lecomte, S.: ‘Fuzzwin: a new concolic tool using a pin ir+z3’. Available at https://github.com/piscou/FuzzWin.
    4. 4)
      • 18. Boonstoppel, P., Cadar, C., Engler, D.: ‘Rwset: attacking path explosion in constraint-based test generation’. Proc. of the Theory and Practice of Software, 14th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'08/ETAPS'08, Berlin, Heidelberg, 2008, pp. 351366.
    5. 5)
      • 15. Shoshitaishvili, Y., Wang, R., Hauser, C., et al: ‘Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware’. Network and Distributed System Security, San Diego, CA, USA, 2015.
    6. 6)
      • 12. Majumdar, R., Sen, K.: ‘Hybrid concolic testing’. 29th Int. Conf. on Software Engineering. ICSE 2007, Minneapolis, MN, USA, 2007, pp. 416426.
    7. 7)
      • 8. Rawat, S., Jain, V., Kumar, A., et al: ‘Vuzzer: application-aware evolutionary fuzzing’. Proc. of the Network and Distributed System Security Symp. (NDSS), San Diego, CA, USA, 2017.
    8. 8)
      • 36. Lattner, C., Adve, V.: ‘Llvm: A compilation framework for lifelong program analysis & transformation’. Proc. of the Int. Symp. on Code Generation and Optimization: Feedback-Directed and Runtime Optimization, Washington, DC, USA, 2004, p. 75.
    9. 9)
      • 44. Perl, H., Dechand, S., Smith, M., et al: ‘Vccfinder: finding potential vulnerabilities in open-source projects to assist code audits’. Proc. of the 22Nd ACM SIGSAC Conf. on Computer and Communications Security, CCS'15, New York, NY, USA, 2015, pp. 426437.
    10. 10)
      • 29. Cadar, C., Ganesh, V., Pawlowski, P., et al: ‘Exe: A system for automatically generating inputs of death using symbolic execution’. Proc. of the ACM Conf. on Computer and Communications Security, Alexandria, VA, USA, 2006.
    11. 11)
      • 46. Grieco, G., Grinblat, G.L., Uzal, L., et al: ‘Toward large-scale vulnerability discovery using machine learning’. Proc. of the Sixth ACM Conf. on Data and Application Security and Privacy, CODASPY ‘16, New York, NY, USA, 2016, pp. 8596.
    12. 12)
      • 3. Sutton, M., Greene, A., Amini, P.: ‘Fuzzing: brute force vulnerability discovery’ (Pearson Education, New York, NY, USA, 2007).
    13. 13)
      • 37. Xu, H., Zhao, Z., Zhou, Y., et al: ‘On benchmarking the capability of symbolic execution tools with logic bombs’. arXiv preprint arXiv:1712.01674, 2017.
    14. 14)
      • 34. Wang, R., Jiang, S., Chen, D.: ‘Similarity-based regression test case prioritization’. Software Engineering and Knowledge Engineering, Pittsburgh, PA, USA, 2015, pp. 358363.
    15. 15)
      • 22. King, J.C.: ‘Symbolic execution and program testing’, Commun. ACM, 1976, 19, (7), pp. 385394.
    16. 16)
      • 1. Duran, J.W., Ntafos, S.C.: ‘An evaluation of random testing’, IEEE Trans. Softw. Eng., 1984, SE-10, (4), pp. 438444.
    17. 17)
      • 9. Stephens, N., Grosen, J., Salls, C., et al: ‘Driller: augmenting fuzzing through selective symbolic execution’. Proc. of the Network and Distributed System Security Symp., San Diego, CA, USA, 2016.
    18. 18)
      • 33. Kim, S.Y., Lee, S., Yun, I., et al: ‘Cab-fuzz: practical concolic testing techniques for cots operating systems’. 2017 USENIX Annual Technical Conf. (USENIX ATC 17), Santa Clara, CA, 2017, pp. 689701.
    19. 19)
      • 54. Coppa, E., D'Elia, D.C., Demetrescu, C.: ‘Rethinking pointer reasoning in symbolic execution’. Proc. of the 32Nd IEEE/ACM Int. Conf. on Automated Software Engineering, ASE 2017, Piscataway, NJ, USA, 2017, pp. 613618.
    20. 20)
      • 5. Ganesh, V., Leek, T., Rinard, M.: ‘Taint-based directed whitebox fuzzing’. Proc. of the 31st Int. Conf. on Software Engineering, Vancouver, Canada, 2009, pp. 474484.
    21. 21)
      • 7. Neystadt, J.: ‘Automated penetration testing with white-box fuzzing’ (MSDN Library, 2008).
    22. 22)
      • 20. Chipounov, V., Kuznetsov, V., Candea, G.: ‘S2e: A platform for in-vivo multi-path analysis of software systems’. ASPLOS, Newport Beach, CA, USA, 2011.
    23. 23)
      • 52. Wang, T., Wei, T., Gu, G., et al: ‘Taintscope: A checksum-aware directed fuzzing tool for automatic software vulnerability detection’. 2010 IEEE Symp. on Security and Privacy (SP), Berkeley, CA, USA, 2010, pp. 497512.
    24. 24)
      • 17. Baldoni, R., Coppa, E., D'Elia, D.C., et al: ‘A survey of symbolic execution techniques’. arXiv preprint arXiv:1610.00502, 2016.
    25. 25)
      • 48. Zhang, D., Liu, D., Lei, Y., et al: ‘SimFuzz: test case similarity directed deep fuzzing’, J. Syst. Softw., 2012, 85, (1), pp. 102111.
    26. 26)
      • 2. Miller, B.P., Fredriksen, L., So, B.: ‘An empirical study of the reliability of unix utilities’. Proc. of the Workshop of Parallel and Distributed Debugging, Santa Cruz, CA, USA, 1990, pp. ixxxi.
    27. 27)
      • 39. Cadar, C.: ‘Targeted program transformations for symbolic execution’. Proc. of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, New York, NY, USA, 2015, pp. 906909.
    28. 28)
      • 27. Trtık, M., Strejcek, J.: ‘Symbolic memory with pointers’. Automated Technology for Verification and Analysis: 12th Int. Symp., ATVA 2014, Sydney, Australia, 3–7 November 2014, Proc., Sydney, Australia, 2014, vol. 8837, p. 380.
    29. 29)
      • 10. Zalewski, M.: ‘American fuzzy lop’. Available at http://lcamtuf.coredump.cx/afl/.
    30. 30)
      • 25. Song, D., Brumley, D., Yin, H., et al: ‘Bitblaze: A new approach to computer security via binary analysis’. Int. Conf. on Information Systems Security, Hyderabad, India, 2008, pp. 125.
    31. 31)
      • 56. Sen, K., Marinov, D., Agha, G.: ‘Cute: a concolic unit testing engine for c’. ACM SIGSOFT Software Engineering Notes, New York, NY, USA, 2005, vol. 30, pp. 263272.
    32. 32)
      • 26. Thakur, A., Lim, J., Lal, A., et al: ‘Directed proof generation for machine code’. Int. Conf. on Computer Aided Verification, Edinburgh, UK, 2010, pp. 288305.
    33. 33)
      • 53. Haller, I., Slowinska, A., Neugschwandtner, M., et al: ‘Dowsing for overflows: A guided fuzzer to find buffer boundary violations’. USENIX Security, Washington, DC, USA, 2013, pp. 4964.
    34. 34)
      • 55. Avgerinos, T., Rebert, A., Cha, S.K., et al: ‘Enhancing symbolic execution with veritesting’. Proc. of the 36th Int. Conf. on Software Engineering, ICSE 2014, New York, NY, USA, 2014, pp. 10831094.
    35. 35)
      • 14. Yeh, C.-C., Chung, H., Huang, S.-K.: ‘Craxfuzz: target-aware symbolic fuzz testing’. 2015 IEEE 39th Annual Computer Software and Applications Conf. (COMPSAC), Taichuang, Taiwan, 2015, vol. 2, pp. 460471.
    36. 36)
      • 4. Cadar, C., Godefroid, P., Khurshid, S., et al: ‘Symbolic execution for software testing in practice: preliminary assessment’. Proc. of the 33rd Int. Conf. on Software Engineering, Waikiki, HI, USA, 2011, pp. 10661071.
    37. 37)
      • 13. Pak, B.S.: ‘Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic execution’. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2012.
    38. 38)
      • 21. Dolan-Gavitt, B., Hulin, P., Kirda, E., et al: ‘Lava: large-scale automated vulnerability addition’. 2016 IEEE Symp. on Security and Privacy (SP), San Jose, CA, USA, 2016, pp. 110121.
    39. 39)
      • 43. Wang, Y., Gu, D., Xu, J., et al: ‘Ricb: integer overflow vulnerability dynamic analysis via buffer overflow’. Int. Conf. on Forensics in Telecommunications, Information, and Multimedia, Shanghai, China, 2010, pp. 99109.
    40. 40)
      • 50. Elbaum, S., Malishevsky, A., Rothermel, G.: ‘Incorporating varying test costs and fault severities into test case prioritization’. Proc. of the 23rd Int. Conf. on Software Engineering, Washington, DC, USA, 2001, pp. 329338.
    41. 41)
      • 38. Wagner, J., Kuznetsov, V., Candea, G.: ‘Overify: optimizing programs for fast verification’. 14th Workshop on Hot Topics in Operating Systems (HotOS XIV), Santa Ana Pueblo, NM, USA, 2013, number EPFL-CONF-186012.
    42. 42)
      • 16. DARPA: ‘Cyber grand challenge’. Available at http://cybergrandchallenge.com.
    43. 43)
      • 6. Godefroid, P., de Halleux, P., Nori, A.V., et al: ‘Automating software testing using program analysis’, IEEE Softw., 2008, 25, (5), pp. 3037.
    44. 44)
      • 42. Wang, T., Wei, T., Lin, Z., et al: ‘Intscope: automatically detecting integer overflow vulnerability in x86 binary using symbolic execution’. Network and Distributed System Security, San Diego, CA, USA, 2009.
    45. 45)
      • 49. Rothermel, G., Untch, R.H., Chu, C., et al: ‘Prioritizing test cases for regression testing’, IEEE Trans. Softw. Eng., 2001, 27, (10), pp. 929948.
    46. 46)
      • 35. Bellard, F.: ‘QEMU, a fast and portable dynamic translator’. USENIX Annual Technical Conf., FREENIX Track, Anaheim, CA, USA, 2005, pp. 4146.
    47. 47)
      • 11. Godefroid, P., Levin, M.Y., Molnar, D.: ‘Sage: whitebox fuzzing for security testing’, Queue, 2012, 10, (1), p. 20.
    48. 48)
      • 45. Yamaguchi, F., Lindner, F., Rieck, K.: ‘Vulnerability extrapolation: assisted discovery of vulnerabilities using machine learning’. Proc. of the 5th USENIX Conf. on Offensive Technologies, WOOT'11, Berkeley, CA, USA, 2011, pp. 1313.
    49. 49)
      • 24. Brumley, D., Jager, I., Avgerinos, T., et al: ‘Bap: A binary analysis platform’. Int. Conf. on Computer Aided Verification, Snowbird, UT, USA, 2011, pp. 463469.
    50. 50)
      • 30. Avgerinos, A.: ‘Exploiting Trade-offs in Symbolic Execution for Identifying Security Bugs’. PhD thesis, Carnegie Mellon University, CMU, 2014.
    51. 51)
      • 28. Cadar, C., Dunbar, D., Engler, D.R., et al: ‘Klee: unassisted and automatic generation of high-coverage tests for complex systems programs’. Operating Systems Design and Implementation, San Diego, CA, USA, 2008, vol. 8, pp. 209224.
    52. 52)
      • 40. Wagner, J., Kuznetsov, V., Candea, G., et al: ‘High system-code security with low overhead’. 2015 IEEE Symp. on Security and Privacy (SP), San Jose, CA, USA, 2015, pp. 866879.
    53. 53)
      • 41. Bishop, M., Engle, S., Howard, D., et al: ‘A taxonomy of buffer overflow characteristics’, IEEE Trans. Dependable Secur. Comput., 2012, 9, (3), pp. 305317.
    54. 54)
      • 32. Avgerinos, T., Cha, S.K., Rebert, A., et al: ‘Automatic exploit generation’, Commun. ACM, 2014, 57, (2), pp. 7484.
    55. 55)
      • 19. Schwartz, E.J., Avgerinos, T., Brumley, D.: ‘All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask)’. 2010 IEEE Symp. on Security and Privacy (SP), Berkeley, CA, USA, 2010, pp. 317331.
    56. 56)
      • 47. Jones, J.A., Harrold, M.J.: ‘Test-suite reduction and prioritization for modified condition/decision coverage’, IEEE Trans. Softw. Eng., 2003, 29, (3), pp. 195209.
    57. 57)
      • 51. Krishnamoorthi, R., Sahaaya Arul Mary, S.A.: ‘Factor oriented requirement coverage based system test case prioritization of new and regression test cases’, Inf. Softw. Technol., 2009, 51, (4), pp. 799808.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2017.0200
Loading

Related content

content/journals/10.1049/iet-sen.2017.0200
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address